1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
@Service public class IncrementalStatisticsService {
@Autowired private StatisticsRepository statisticsRepository;
@Autowired private RedisTemplate<String, Object> redisTemplate;
@Autowired private KafkaTemplate<String, Object> kafkaTemplate;
private final String INCREMENTAL_STATISTICS_CACHE_PREFIX = "incremental_statistics:"; private final String INCREMENTAL_STATISTICS_OFFSET_PREFIX = "incremental_offset:";
public void processIncrementalStatistics(IncrementalStatisticsRequest request) { try { validateIncrementalStatisticsRequest(request);
List<StatisticsData> incrementalData = getIncrementalData(request);
processIncrementalData(incrementalData, request);
updateOffset(request);
log.info("增量统计处理完成: {}", request.getRequestId());
} catch (Exception e) { log.error("增量统计处理失败: {}", request.getRequestId(), e); } }
private void validateIncrementalStatisticsRequest(IncrementalStatisticsRequest request) { if (request == null) { throw new IllegalArgumentException("增量统计请求不能为空"); }
if (request.getRequestId() == null) { throw new IllegalArgumentException("请求ID不能为空"); }
if (request.getDataSource() == null) { throw new IllegalArgumentException("数据源不能为空"); } }
private List<StatisticsData> getIncrementalData(IncrementalStatisticsRequest request) { try { Long offset = getOffset(request);
List<StatisticsData> incrementalData = statisticsRepository.findIncrementalData( request.getDataSource(), offset, request.getBatchSize());
List<StatisticsData> processedData = preprocessIncrementalData(incrementalData);
return processedData;
} catch (Exception e) { log.error("获取增量数据失败", e); throw new StatisticsException("获取增量数据失败", e); } }
private Long getOffset(IncrementalStatisticsRequest request) { try { String offsetKey = INCREMENTAL_STATISTICS_OFFSET_PREFIX + request.getDataSource(); Long offset = (Long) redisTemplate.opsForValue().get(offsetKey);
return offset != null ? offset : 0L;
} catch (Exception e) { log.error("获取偏移量失败", e); return 0L; } }
private List<StatisticsData> preprocessIncrementalData(List<StatisticsData> dataList) { try { List<StatisticsData> processedList = new ArrayList<>();
for (StatisticsData data : dataList) { try { StatisticsData cleanedData = cleanIncrementalData(data);
if (validateIncrementalData(cleanedData)) { processedList.add(cleanedData); }
} catch (Exception e) { log.error("预处理增量数据失败: {}", data.getDataId(), e); } }
return processedList;
} catch (Exception e) { log.error("预处理增量数据失败", e); throw new StatisticsException("预处理增量数据失败", e); } }
private StatisticsData cleanIncrementalData(StatisticsData data) { try { StatisticsData cleanedData = new StatisticsData(); cleanedData.setDataId(data.getDataId()); cleanedData.setTimestamp(data.getTimestamp());
if (data.getNumericValue() != null) { cleanedData.setNumericValue(data.getNumericValue()); }
if (data.getStringValue() != null) { cleanedData.setStringValue(data.getStringValue().trim()); }
if (data.getCategory() != null) { cleanedData.setCategory(data.getCategory().trim().toLowerCase()); }
return cleanedData;
} catch (Exception e) { log.error("清洗增量数据失败", e); throw new StatisticsException("清洗增量数据失败", e); } }
private boolean validateIncrementalData(StatisticsData data) { try { if (data.getDataId() == null || data.getTimestamp() == null) { return false; }
if (data.getNumericValue() != null) { if (data.getNumericValue() < 0 || data.getNumericValue() > 1000000) { return false; } }
if (data.getStringValue() != null && data.getStringValue().length() > 1000) { return false; }
return true;
} catch (Exception e) { log.error("验证增量数据失败", e); return false; } }
private void processIncrementalData(List<StatisticsData> incrementalData, IncrementalStatisticsRequest request) { try { if (incrementalData.isEmpty()) { return; }
StatisticsResult result = calculateIncrementalStatistics(incrementalData);
updateIncrementalStatisticsResult(result, request);
sendIncrementalStatisticsEvent(result, request);
recordIncrementalProcessingLog(incrementalData, result, request);
} catch (Exception e) { log.error("处理增量数据失败", e); } }
private StatisticsResult calculateIncrementalStatistics(List<StatisticsData> incrementalData) { try { StatisticsResult result = new StatisticsResult(); result.setCount((long) incrementalData.size());
if (incrementalData.isEmpty()) { return result; }
double sum = 0.0; double min = Double.MAX_VALUE; double max = Double.MIN_VALUE;
for (StatisticsData data : incrementalData) { if (data.getNumericValue() != null) { double value = data.getNumericValue(); sum += value; min = Math.min(min, value); max = Math.max(max, value); } }
result.setSum(sum); result.setAverage(sum / incrementalData.size()); result.setMin(min == Double.MAX_VALUE ? 0.0 : min); result.setMax(max == Double.MIN_VALUE ? 0.0 : max);
double variance = calculateIncrementalVariance(incrementalData, result.getAverage()); result.setVariance(variance); result.setStandardDeviation(Math.sqrt(variance));
return result;
} catch (Exception e) { log.error("计算增量统计指标失败", e); throw new StatisticsException("计算增量统计指标失败", e); } }
private double calculateIncrementalVariance(List<StatisticsData> incrementalData, double mean) { try { double sumSquaredDiff = 0.0; int count = 0;
for (StatisticsData data : incrementalData) { if (data.getNumericValue() != null) { double diff = data.getNumericValue() - mean; sumSquaredDiff += diff * diff; count++; } }
return count > 0 ? sumSquaredDiff / count : 0.0;
} catch (Exception e) { log.error("计算增量方差失败", e); return 0.0; } }
private void updateIncrementalStatisticsResult(StatisticsResult result, IncrementalStatisticsRequest request) { try { String cacheKey = INCREMENTAL_STATISTICS_CACHE_PREFIX + request.getDataSource();
StatisticsResult existingResult = (StatisticsResult) redisTemplate.opsForValue().get(cacheKey);
if (existingResult == null) { existingResult = new StatisticsResult(); existingResult.setCount(0L); existingResult.setSum(0.0); existingResult.setMin(Double.MAX_VALUE); existingResult.setMax(Double.MIN_VALUE); }
existingResult.setCount(existingResult.getCount() + result.getCount()); existingResult.setSum(existingResult.getSum() + result.getSum()); existingResult.setAverage(existingResult.getSum() / existingResult.getCount()); existingResult.setMin(Math.min(existingResult.getMin(), result.getMin())); existingResult.setMax(Math.max(existingResult.getMax(), result.getMax()));
redisTemplate.opsForValue().set(cacheKey, existingResult, Duration.ofHours(24));
} catch (Exception e) { log.error("更新增量统计结果失败", e); } }
private void sendIncrementalStatisticsEvent(StatisticsResult result, IncrementalStatisticsRequest request) { try { IncrementalStatisticsEvent event = new IncrementalStatisticsEvent(); event.setRequestId(request.getRequestId()); event.setDataSource(request.getDataSource()); event.setCount(result.getCount()); event.setSum(result.getSum()); event.setAverage(result.getAverage()); event.setEventTime(LocalDateTime.now()); event.setEventType("INCREMENTAL_STATISTICS");
kafkaTemplate.send("incremental.statistics.event.topic", event);
} catch (Exception e) { log.error("发送增量统计事件失败", e); } }
private void recordIncrementalProcessingLog(List<StatisticsData> incrementalData, StatisticsResult result, IncrementalStatisticsRequest request) { try { IncrementalProcessingLog log = new IncrementalProcessingLog(); log.setRequestId(request.getRequestId()); log.setDataSource(request.getDataSource()); log.setDataCount(incrementalData.size()); log.setCount(result.getCount()); log.setSum(result.getSum()); log.setAverage(result.getAverage()); log.setProcessTime(LocalDateTime.now());
CompletableFuture.runAsync(() -> { try { statisticsRepository.saveIncrementalProcessingLog(log); } catch (Exception e) { log.error("保存增量处理日志失败", e); } });
} catch (Exception e) { log.error("记录增量处理日志失败", e); } }
private void updateOffset(IncrementalStatisticsRequest request) { try { String offsetKey = INCREMENTAL_STATISTICS_OFFSET_PREFIX + request.getDataSource();
Long currentOffset = getOffset(request);
Long newOffset = currentOffset + request.getBatchSize(); redisTemplate.opsForValue().set(offsetKey, newOffset, Duration.ofDays(7));
} catch (Exception e) { log.error("更新偏移量失败", e); } } }
|