前言

线上问题排查作为架构师的核心技能之一,直接影响着系统的稳定性和用户体验。通过系统化的问题排查思路,掌握高效的故障定位方法,能够快速识别问题根因,制定有效的解决方案,确保企业级应用的高可用性。本文从问题排查思路到根因分析,从基础方法到企业级实践,系统梳理线上问题排查的完整解决方案。

一、线上问题排查整体思路

1.1 问题排查流程架构

1.2 问题分类与优先级

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/**
* 线上问题分类与优先级管理
*/
@Component
public class ProblemClassificationService {

/**
* 问题严重程度枚举
*/
public enum Severity {
CRITICAL(1, "严重", "系统完全不可用"),
HIGH(2, "高", "核心功能不可用"),
MEDIUM(3, "中", "部分功能受影响"),
LOW(4, "低", "轻微影响用户体验");

private final int level;
private final String name;
private final String description;

Severity(int level, String name, String description) {
this.level = level;
this.name = name;
this.description = description;
}
}

/**
* 问题类型枚举
*/
public enum ProblemType {
PERFORMANCE("性能问题", "响应时间慢、吞吐量低"),
AVAILABILITY("可用性问题", "服务不可用、宕机"),
DATA("数据问题", "数据丢失、数据不一致"),
SECURITY("安全问题", "安全漏洞、权限问题"),
FUNCTIONAL("功能问题", "业务逻辑错误、功能异常");

private final String name;
private final String description;

ProblemType(String name, String description) {
this.name = name;
this.description = description;
}
}

/**
* 问题分类
*/
public ProblemClassification classifyProblem(ProblemReport report) {
ProblemClassification classification = new ProblemClassification();

// 1. 确定问题类型
ProblemType type = determineProblemType(report);
classification.setType(type);

// 2. 评估严重程度
Severity severity = assessSeverity(report);
classification.setSeverity(severity);

// 3. 计算影响范围
ImpactScope impactScope = calculateImpactScope(report);
classification.setImpactScope(impactScope);

// 4. 确定处理优先级
int priority = calculatePriority(type, severity, impactScope);
classification.setPriority(priority);

return classification;
}

/**
* 确定问题类型
*/
private ProblemType determineProblemType(ProblemReport report) {
String description = report.getDescription().toLowerCase();

if (description.contains("慢") || description.contains("timeout") ||
description.contains("性能")) {
return ProblemType.PERFORMANCE;
} else if (description.contains("不可用") || description.contains("down") ||
description.contains("宕机")) {
return ProblemType.AVAILABILITY;
} else if (description.contains("数据") || description.contains("丢失") ||
description.contains("不一致")) {
return ProblemType.DATA;
} else if (description.contains("安全") || description.contains("权限") ||
description.contains("漏洞")) {
return ProblemType.SECURITY;
} else {
return ProblemType.FUNCTIONAL;
}
}

/**
* 评估严重程度
*/
private Severity assessSeverity(ProblemReport report) {
// 根据影响用户数、业务指标等评估
int affectedUsers = report.getAffectedUsers();
double businessImpact = report.getBusinessImpact();

if (affectedUsers > 10000 || businessImpact > 0.8) {
return Severity.CRITICAL;
} else if (affectedUsers > 1000 || businessImpact > 0.5) {
return Severity.HIGH;
} else if (affectedUsers > 100 || businessImpact > 0.2) {
return Severity.MEDIUM;
} else {
return Severity.LOW;
}
}
}

二、问题定位方法论

2.1 系统化问题定位流程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/**
* 系统化问题定位服务
*/
@Service
public class ProblemLocationService {

@Autowired
private LogAnalysisService logAnalysisService;

@Autowired
private PerformanceMonitorService performanceMonitorService;

@Autowired
private TraceAnalysisService traceAnalysisService;

@Autowired
private SystemMetricsService systemMetricsService;

/**
* 执行问题定位
*/
public ProblemLocationResult locateProblem(ProblemReport report) {
ProblemLocationResult result = new ProblemLocationResult();

try {
// 1. 收集基础信息
ProblemContext context = collectProblemContext(report);
result.setContext(context);

// 2. 分析日志
LogAnalysisResult logResult = analyzeLogs(context);
result.setLogAnalysis(logResult);

// 3. 分析性能指标
PerformanceAnalysisResult perfResult = analyzePerformance(context);
result.setPerformanceAnalysis(perfResult);

// 4. 分析链路追踪
TraceAnalysisResult traceResult = analyzeTraces(context);
result.setTraceAnalysis(traceResult);

// 5. 分析系统指标
SystemMetricsResult metricsResult = analyzeSystemMetrics(context);
result.setSystemMetrics(metricsResult);

// 6. 综合分析定位问题
ProblemLocation location = synthesizeAnalysis(result);
result.setLocation(location);

return result;

} catch (Exception e) {
log.error("问题定位失败", e);
throw new ProblemLocationException("问题定位失败", e);
}
}

/**
* 收集问题上下文
*/
private ProblemContext collectProblemContext(ProblemReport report) {
ProblemContext context = new ProblemContext();

// 收集时间范围
context.setTimeRange(report.getTimeRange());

// 收集影响范围
context.setAffectedServices(report.getAffectedServices());
context.setAffectedUsers(report.getAffectedUsers());

// 收集环境信息
context.setEnvironment(report.getEnvironment());
context.setVersion(report.getVersion());

// 收集业务指标
context.setBusinessMetrics(report.getBusinessMetrics());

return context;
}

/**
* 分析日志
*/
private LogAnalysisResult analyzeLogs(ProblemContext context) {
LogAnalysisResult result = new LogAnalysisResult();

try {
// 1. 收集相关日志
List<LogEntry> logs = logAnalysisService.collectLogs(context);
result.setLogs(logs);

// 2. 分析错误日志
List<ErrorLog> errorLogs = logAnalysisService.extractErrors(logs);
result.setErrorLogs(errorLogs);

// 3. 分析异常模式
List<ExceptionPattern> patterns = logAnalysisService.analyzePatterns(errorLogs);
result.setExceptionPatterns(patterns);

// 4. 分析日志趋势
LogTrend trend = logAnalysisService.analyzeTrend(logs);
result.setTrend(trend);

return result;

} catch (Exception e) {
log.error("日志分析失败", e);
return new LogAnalysisResult();
}
}

/**
* 分析性能指标
*/
private PerformanceAnalysisResult analyzePerformance(ProblemContext context) {
PerformanceAnalysisResult result = new PerformanceAnalysisResult();

try {
// 1. 分析响应时间
ResponseTimeAnalysis responseTime =
performanceMonitorService.analyzeResponseTime(context);
result.setResponseTime(responseTime);

// 2. 分析吞吐量
ThroughputAnalysis throughput =
performanceMonitorService.analyzeThroughput(context);
result.setThroughput(throughput);

// 3. 分析资源使用率
ResourceUsageAnalysis resourceUsage =
performanceMonitorService.analyzeResourceUsage(context);
result.setResourceUsage(resourceUsage);

// 4. 分析性能瓶颈
List<PerformanceBottleneck> bottlenecks =
performanceMonitorService.identifyBottlenecks(context);
result.setBottlenecks(bottlenecks);

return result;

} catch (Exception e) {
log.error("性能分析失败", e);
return new PerformanceAnalysisResult();
}
}

/**
* 分析链路追踪
*/
private TraceAnalysisResult analyzeTraces(ProblemContext context) {
TraceAnalysisResult result = new TraceAnalysisResult();

try {
// 1. 收集相关链路
List<Trace> traces = traceAnalysisService.collectTraces(context);
result.setTraces(traces);

// 2. 分析链路性能
TracePerformanceAnalysis tracePerf =
traceAnalysisService.analyzePerformance(traces);
result.setTracePerformance(tracePerf);

// 3. 分析异常链路
List<AbnormalTrace> abnormalTraces =
traceAnalysisService.identifyAbnormalTraces(traces);
result.setAbnormalTraces(abnormalTraces);

// 4. 分析调用链
CallChainAnalysis callChain =
traceAnalysisService.analyzeCallChain(traces);
result.setCallChain(callChain);

return result;

} catch (Exception e) {
log.error("链路分析失败", e);
return new TraceAnalysisResult();
}
}

/**
* 综合分析定位问题
*/
private ProblemLocation synthesizeAnalysis(ProblemLocationResult result) {
ProblemLocation location = new ProblemLocation();

// 1. 基于日志分析定位
if (result.getLogAnalysis().hasErrors()) {
location.addEvidence("日志错误", result.getLogAnalysis().getErrorLogs());
}

// 2. 基于性能分析定位
if (result.getPerformanceAnalysis().hasBottlenecks()) {
location.addEvidence("性能瓶颈", result.getPerformanceAnalysis().getBottlenecks());
}

// 3. 基于链路分析定位
if (result.getTraceAnalysis().hasAbnormalTraces()) {
location.addEvidence("异常链路", result.getTraceAnalysis().getAbnormalTraces());
}

// 4. 基于系统指标定位
if (result.getSystemMetrics().hasAnomalies()) {
location.addEvidence("系统异常", result.getSystemMetrics().getAnomalies());
}

// 5. 综合判断问题位置
location.setProbableCause(determineProbableCause(location));
location.setConfidence(calculateConfidence(location));

return location;
}
}

2.2 日志分析策略

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/**
* 日志分析服务
*/
@Service
public class LogAnalysisService {

@Autowired
private LogRepository logRepository;

@Autowired
private LogParserService logParserService;

/**
* 收集相关日志
*/
public List<LogEntry> collectLogs(ProblemContext context) {
try {
// 1. 构建查询条件
LogQuery query = buildLogQuery(context);

// 2. 执行日志查询
List<LogEntry> logs = logRepository.queryLogs(query);

// 3. 过滤和排序
logs = filterAndSortLogs(logs, context);

return logs;

} catch (Exception e) {
log.error("日志收集失败", e);
return new ArrayList<>();
}
}

/**
* 构建日志查询条件
*/
private LogQuery buildLogQuery(ProblemContext context) {
LogQuery query = new LogQuery();

// 时间范围
query.setStartTime(context.getTimeRange().getStartTime());
query.setEndTime(context.getTimeRange().getEndTime());

// 服务范围
query.setServices(context.getAffectedServices());

// 日志级别
query.setLevels(Arrays.asList("ERROR", "WARN", "FATAL"));

// 关键词
if (context.getKeywords() != null) {
query.setKeywords(context.getKeywords());
}

return query;
}

/**
* 提取错误日志
*/
public List<ErrorLog> extractErrors(List<LogEntry> logs) {
return logs.stream()
.filter(log -> log.getLevel().equals("ERROR") || log.getLevel().equals("FATAL"))
.map(this::parseErrorLog)
.filter(Objects::nonNull)
.collect(Collectors.toList());
}

/**
* 解析错误日志
*/
private ErrorLog parseErrorLog(LogEntry log) {
try {
ErrorLog errorLog = new ErrorLog();
errorLog.setTimestamp(log.getTimestamp());
errorLog.setService(log.getService());
errorLog.setMessage(log.getMessage());
errorLog.setStackTrace(log.getStackTrace());

// 解析异常类型
String exceptionType = extractExceptionType(log.getMessage());
errorLog.setExceptionType(exceptionType);

// 解析异常信息
String exceptionMessage = extractExceptionMessage(log.getMessage());
errorLog.setExceptionMessage(exceptionMessage);

return errorLog;

} catch (Exception e) {
log.warn("解析错误日志失败: {}", log.getMessage());
return null;
}
}

/**
* 分析异常模式
*/
public List<ExceptionPattern> analyzePatterns(List<ErrorLog> errorLogs) {
Map<String, List<ErrorLog>> groupedErrors = errorLogs.stream()
.collect(Collectors.groupingBy(ErrorLog::getExceptionType));

List<ExceptionPattern> patterns = new ArrayList<>();

for (Map.Entry<String, List<ErrorLog>> entry : groupedErrors.entrySet()) {
String exceptionType = entry.getKey();
List<ErrorLog> errors = entry.getValue();

ExceptionPattern pattern = new ExceptionPattern();
pattern.setExceptionType(exceptionType);
pattern.setCount(errors.size());
pattern.setFirstOccurrence(errors.get(0).getTimestamp());
pattern.setLastOccurrence(errors.get(errors.size() - 1).getTimestamp());

// 分析异常频率
pattern.setFrequency(calculateFrequency(errors));

// 分析异常趋势
pattern.setTrend(analyzeTrend(errors));

patterns.add(pattern);
}

return patterns.stream()
.sorted((p1, p2) -> Integer.compare(p2.getCount(), p1.getCount()))
.collect(Collectors.toList());
}

/**
* 分析日志趋势
*/
public LogTrend analyzeTrend(List<LogEntry> logs) {
LogTrend trend = new LogTrend();

// 按时间分组统计
Map<String, Long> timeGroupedCounts = logs.stream()
.collect(Collectors.groupingBy(
log -> formatTimeGroup(log.getTimestamp()),
Collectors.counting()
));

trend.setTimeGroupedCounts(timeGroupedCounts);

// 计算趋势
trend.setTrendDirection(calculateTrendDirection(timeGroupedCounts));
trend.setTrendStrength(calculateTrendStrength(timeGroupedCounts));

return trend;
}

/**
* 计算异常频率
*/
private double calculateFrequency(List<ErrorLog> errors) {
if (errors.size() < 2) {
return 0.0;
}

long timeSpan = errors.get(errors.size() - 1).getTimestamp().getTime() -
errors.get(0).getTimestamp().getTime();

return (double) errors.size() / (timeSpan / 60000.0); // 每分钟频率
}

/**
* 分析异常趋势
*/
private TrendDirection analyzeTrend(List<ErrorLog> errors) {
if (errors.size() < 3) {
return TrendDirection.STABLE;
}

// 简单趋势分析:比较前半段和后半段的频率
int mid = errors.size() / 2;
double firstHalfFreq = calculateFrequency(errors.subList(0, mid));
double secondHalfFreq = calculateFrequency(errors.subList(mid, errors.size()));

if (secondHalfFreq > firstHalfFreq * 1.2) {
return TrendDirection.INCREASING;
} else if (secondHalfFreq < firstHalfFreq * 0.8) {
return TrendDirection.DECREASING;
} else {
return TrendDirection.STABLE;
}
}
}

三、性能问题排查

3.1 性能监控与分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/**
* 性能监控分析服务
*/
@Service
public class PerformanceMonitorService {

@Autowired
private MetricsCollector metricsCollector;

@Autowired
private PerformanceAnalyzer performanceAnalyzer;

/**
* 分析响应时间
*/
public ResponseTimeAnalysis analyzeResponseTime(ProblemContext context) {
ResponseTimeAnalysis analysis = new ResponseTimeAnalysis();

try {
// 1. 收集响应时间数据
List<ResponseTimeMetric> metrics =
metricsCollector.collectResponseTimeMetrics(context);

// 2. 计算统计指标
ResponseTimeStats stats = calculateResponseTimeStats(metrics);
analysis.setStats(stats);

// 3. 分析响应时间分布
ResponseTimeDistribution distribution =
analyzeResponseTimeDistribution(metrics);
analysis.setDistribution(distribution);

// 4. 识别异常响应时间
List<ResponseTimeAnomaly> anomalies =
identifyResponseTimeAnomalies(metrics);
analysis.setAnomalies(anomalies);

// 5. 分析响应时间趋势
ResponseTimeTrend trend = analyzeResponseTimeTrend(metrics);
analysis.setTrend(trend);

return analysis;

} catch (Exception e) {
log.error("响应时间分析失败", e);
return new ResponseTimeAnalysis();
}
}

/**
* 分析吞吐量
*/
public ThroughputAnalysis analyzeThroughput(ProblemContext context) {
ThroughputAnalysis analysis = new ThroughputAnalysis();

try {
// 1. 收集吞吐量数据
List<ThroughputMetric> metrics =
metricsCollector.collectThroughputMetrics(context);

// 2. 计算吞吐量统计
ThroughputStats stats = calculateThroughputStats(metrics);
analysis.setStats(stats);

// 3. 分析吞吐量趋势
ThroughputTrend trend = analyzeThroughputTrend(metrics);
analysis.setTrend(trend);

// 4. 识别吞吐量瓶颈
List<ThroughputBottleneck> bottlenecks =
identifyThroughputBottlenecks(metrics);
analysis.setBottlenecks(bottlenecks);

return analysis;

} catch (Exception e) {
log.error("吞吐量分析失败", e);
return new ThroughputAnalysis();
}
}

/**
* 分析资源使用率
*/
public ResourceUsageAnalysis analyzeResourceUsage(ProblemContext context) {
ResourceUsageAnalysis analysis = new ResourceUsageAnalysis();

try {
// 1. 收集CPU使用率
List<CpuMetric> cpuMetrics =
metricsCollector.collectCpuMetrics(context);
analysis.setCpuUsage(analyzeCpuUsage(cpuMetrics));

// 2. 收集内存使用率
List<MemoryMetric> memoryMetrics =
metricsCollector.collectMemoryMetrics(context);
analysis.setMemoryUsage(analyzeMemoryUsage(memoryMetrics));

// 3. 收集磁盘使用率
List<DiskMetric> diskMetrics =
metricsCollector.collectDiskMetrics(context);
analysis.setDiskUsage(analyzeDiskUsage(diskMetrics));

// 4. 收集网络使用率
List<NetworkMetric> networkMetrics =
metricsCollector.collectNetworkMetrics(context);
analysis.setNetworkUsage(analyzeNetworkUsage(networkMetrics));

// 5. 分析资源瓶颈
List<ResourceBottleneck> bottlenecks =
identifyResourceBottlenecks(analysis);
analysis.setBottlenecks(bottlenecks);

return analysis;

} catch (Exception e) {
log.error("资源使用率分析失败", e);
return new ResourceUsageAnalysis();
}
}

/**
* 识别性能瓶颈
*/
public List<PerformanceBottleneck> identifyBottlenecks(ProblemContext context) {
List<PerformanceBottleneck> bottlenecks = new ArrayList<>();

try {
// 1. 分析响应时间瓶颈
ResponseTimeAnalysis responseTimeAnalysis = analyzeResponseTime(context);
if (responseTimeAnalysis.hasBottlenecks()) {
bottlenecks.addAll(responseTimeAnalysis.getBottlenecks());
}

// 2. 分析吞吐量瓶颈
ThroughputAnalysis throughputAnalysis = analyzeThroughput(context);
if (throughputAnalysis.hasBottlenecks()) {
bottlenecks.addAll(throughputAnalysis.getBottlenecks());
}

// 3. 分析资源瓶颈
ResourceUsageAnalysis resourceAnalysis = analyzeResourceUsage(context);
if (resourceAnalysis.hasBottlenecks()) {
bottlenecks.addAll(resourceAnalysis.getBottlenecks());
}

// 4. 分析数据库瓶颈
List<DatabaseBottleneck> dbBottlenecks = identifyDatabaseBottlenecks(context);
bottlenecks.addAll(dbBottlenecks);

// 5. 分析缓存瓶颈
List<CacheBottleneck> cacheBottlenecks = identifyCacheBottlenecks(context);
bottlenecks.addAll(cacheBottlenecks);

return bottlenecks.stream()
.sorted((b1, b2) -> Double.compare(b2.getImpact(), b1.getImpact()))
.collect(Collectors.toList());

} catch (Exception e) {
log.error("性能瓶颈识别失败", e);
return new ArrayList<>();
}
}

/**
* 计算响应时间统计
*/
private ResponseTimeStats calculateResponseTimeStats(List<ResponseTimeMetric> metrics) {
ResponseTimeStats stats = new ResponseTimeStats();

if (metrics.isEmpty()) {
return stats;
}

// 计算基础统计
List<Double> responseTimes = metrics.stream()
.map(ResponseTimeMetric::getResponseTime)
.collect(Collectors.toList());

stats.setMin(Collections.min(responseTimes));
stats.setMax(Collections.max(responseTimes));
stats.setAverage(responseTimes.stream().mapToDouble(Double::doubleValue).average().orElse(0.0));

// 计算百分位数
Collections.sort(responseTimes);
stats.setP50(calculatePercentile(responseTimes, 50));
stats.setP90(calculatePercentile(responseTimes, 90));
stats.setP95(calculatePercentile(responseTimes, 95));
stats.setP99(calculatePercentile(responseTimes, 99));

// 计算标准差
double variance = responseTimes.stream()
.mapToDouble(rt -> Math.pow(rt - stats.getAverage(), 2))
.average().orElse(0.0);
stats.setStandardDeviation(Math.sqrt(variance));

return stats;
}

/**
* 计算百分位数
*/
private double calculatePercentile(List<Double> sortedValues, int percentile) {
int index = (int) Math.ceil((percentile / 100.0) * sortedValues.size()) - 1;
return sortedValues.get(Math.max(0, index));
}
}

3.2 数据库性能排查

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/**
* 数据库性能排查服务
*/
@Service
public class DatabasePerformanceService {

@Autowired
private DatabaseMetricsCollector dbMetricsCollector;

@Autowired
private QueryAnalyzer queryAnalyzer;

/**
* 分析数据库性能问题
*/
public DatabasePerformanceAnalysis analyzeDatabasePerformance(ProblemContext context) {
DatabasePerformanceAnalysis analysis = new DatabasePerformanceAnalysis();

try {
// 1. 收集数据库连接信息
DatabaseConnectionInfo connectionInfo =
dbMetricsCollector.collectConnectionInfo(context);
analysis.setConnectionInfo(connectionInfo);

// 2. 分析慢查询
List<SlowQuery> slowQueries =
dbMetricsCollector.collectSlowQueries(context);
analysis.setSlowQueries(slowQueries);

// 3. 分析锁等待
List<LockWait> lockWaits =
dbMetricsCollector.collectLockWaits(context);
analysis.setLockWaits(lockWaits);

// 4. 分析死锁
List<Deadlock> deadlocks =
dbMetricsCollector.collectDeadlocks(context);
analysis.setDeadlocks(deadlocks);

// 5. 分析表锁
List<TableLock> tableLocks =
dbMetricsCollector.collectTableLocks(context);
analysis.setTableLocks(tableLocks);

// 6. 分析索引使用情况
List<IndexUsage> indexUsages =
dbMetricsCollector.collectIndexUsage(context);
analysis.setIndexUsages(indexUsages);

// 7. 分析数据库瓶颈
List<DatabaseBottleneck> bottlenecks =
identifyDatabaseBottlenecks(analysis);
analysis.setBottlenecks(bottlenecks);

return analysis;

} catch (Exception e) {
log.error("数据库性能分析失败", e);
return new DatabasePerformanceAnalysis();
}
}

/**
* 分析慢查询
*/
public SlowQueryAnalysis analyzeSlowQueries(List<SlowQuery> slowQueries) {
SlowQueryAnalysis analysis = new SlowQueryAnalysis();

try {
// 1. 按查询语句分组
Map<String, List<SlowQuery>> groupedQueries = slowQueries.stream()
.collect(Collectors.groupingBy(SlowQuery::getQueryHash));

// 2. 分析每个查询的性能
List<QueryPerformance> queryPerformances = new ArrayList<>();
for (Map.Entry<String, List<SlowQuery>> entry : groupedQueries.entrySet()) {
String queryHash = entry.getKey();
List<SlowQuery> queries = entry.getValue();

QueryPerformance performance = analyzeQueryPerformance(queryHash, queries);
queryPerformances.add(performance);
}

analysis.setQueryPerformances(queryPerformances);

// 3. 识别最慢的查询
QueryPerformance slowestQuery = queryPerformances.stream()
.max(Comparator.comparing(QueryPerformance::getAverageExecutionTime))
.orElse(null);
analysis.setSlowestQuery(slowestQuery);

// 4. 分析查询趋势
QueryTrend trend = analyzeQueryTrend(slowQueries);
analysis.setTrend(trend);

return analysis;

} catch (Exception e) {
log.error("慢查询分析失败", e);
return new SlowQueryAnalysis();
}
}

/**
* 分析查询性能
*/
private QueryPerformance analyzeQueryPerformance(String queryHash, List<SlowQuery> queries) {
QueryPerformance performance = new QueryPerformance();

// 基础信息
SlowQuery firstQuery = queries.get(0);
performance.setQueryHash(queryHash);
performance.setQueryText(firstQuery.getQueryText());
performance.setExecutionCount(queries.size());

// 执行时间统计
List<Long> executionTimes = queries.stream()
.map(SlowQuery::getExecutionTime)
.collect(Collectors.toList());

performance.setMinExecutionTime(Collections.min(executionTimes));
performance.setMaxExecutionTime(Collections.max(executionTimes));
performance.setAverageExecutionTime(executionTimes.stream().mapToLong(Long::longValue).average().orElse(0.0));

// 锁定时间统计
List<Long> lockTimes = queries.stream()
.map(SlowQuery::getLockTime)
.collect(Collectors.toList());

performance.setMinLockTime(Collections.min(lockTimes));
performance.setMaxLockTime(Collections.max(lockTimes));
performance.setAverageLockTime(lockTimes.stream().mapToLong(Long::longValue).average().orElse(0.0));

// 行数统计
List<Long> rowsExamined = queries.stream()
.map(SlowQuery::getRowsExamined)
.collect(Collectors.toList());

performance.setMinRowsExamined(Collections.min(rowsExamined));
performance.setMaxRowsExamined(Collections.max(rowsExamined));
performance.setAverageRowsExamined(rowsExamined.stream().mapToLong(Long::longValue).average().orElse(0.0));

// 分析查询计划
QueryPlanAnalysis planAnalysis = queryAnalyzer.analyzeQueryPlan(firstQuery.getQueryText());
performance.setPlanAnalysis(planAnalysis);

return performance;
}

/**
* 识别数据库瓶颈
*/
private List<DatabaseBottleneck> identifyDatabaseBottlenecks(DatabasePerformanceAnalysis analysis) {
List<DatabaseBottleneck> bottlenecks = new ArrayList<>();

// 1. 连接数瓶颈
if (analysis.getConnectionInfo().getActiveConnections() >
analysis.getConnectionInfo().getMaxConnections() * 0.8) {
DatabaseBottleneck bottleneck = new DatabaseBottleneck();
bottleneck.setType(BottleneckType.CONNECTION_POOL);
bottleneck.setDescription("数据库连接池使用率过高");
bottleneck.setImpact(0.8);
bottlenecks.add(bottleneck);
}

// 2. 慢查询瓶颈
if (!analysis.getSlowQueries().isEmpty()) {
DatabaseBottleneck bottleneck = new DatabaseBottleneck();
bottleneck.setType(BottleneckType.SLOW_QUERY);
bottleneck.setDescription("存在大量慢查询");
bottleneck.setImpact(0.7);
bottlenecks.add(bottleneck);
}

// 3. 锁等待瓶颈
if (!analysis.getLockWaits().isEmpty()) {
DatabaseBottleneck bottleneck = new DatabaseBottleneck();
bottleneck.setType(BottleneckType.LOCK_WAIT);
bottleneck.setDescription("存在锁等待问题");
bottleneck.setImpact(0.6);
bottlenecks.add(bottleneck);
}

// 4. 死锁瓶颈
if (!analysis.getDeadlocks().isEmpty()) {
DatabaseBottleneck bottleneck = new DatabaseBottleneck();
bottleneck.setType(BottleneckType.DEADLOCK);
bottleneck.setDescription("存在死锁问题");
bottleneck.setImpact(0.9);
bottlenecks.add(bottleneck);
}

return bottlenecks;
}
}

四、根因分析方法

4.1 5Why分析法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/**
* 5Why根因分析服务
*/
@Service
public class FiveWhyAnalysisService {

/**
* 执行5Why分析
*/
public FiveWhyAnalysisResult performFiveWhyAnalysis(ProblemReport report) {
FiveWhyAnalysisResult result = new FiveWhyAnalysisResult();

try {
// 1. 构建问题树
ProblemTree problemTree = buildProblemTree(report);
result.setProblemTree(problemTree);

// 2. 执行5Why分析
List<WhyAnalysis> whyAnalyses = performWhyAnalysis(problemTree);
result.setWhyAnalyses(whyAnalyses);

// 3. 识别根因
List<RootCause> rootCauses = identifyRootCauses(whyAnalyses);
result.setRootCauses(rootCauses);

// 4. 验证根因
List<RootCauseValidation> validations = validateRootCauses(rootCauses, report);
result.setValidations(validations);

// 5. 生成分析报告
FiveWhyReport analysisReport = generateAnalysisReport(result);
result.setReport(analysisReport);

return result;

} catch (Exception e) {
log.error("5Why分析失败", e);
throw new FiveWhyAnalysisException("5Why分析失败", e);
}
}

/**
* 构建问题树
*/
private ProblemTree buildProblemTree(ProblemReport report) {
ProblemTree tree = new ProblemTree();

// 根节点:问题现象
ProblemNode rootNode = new ProblemNode();
rootNode.setLevel(0);
rootNode.setDescription(report.getDescription());
rootNode.setType(NodeType.PROBLEM_SYMPTOM);

tree.setRootNode(rootNode);

// 构建子问题节点
List<ProblemNode> childNodes = buildChildNodes(rootNode, report);
rootNode.setChildren(childNodes);

return tree;
}

/**
* 构建子问题节点
*/
private List<ProblemNode> buildChildNodes(ProblemNode parentNode, ProblemReport report) {
List<ProblemNode> childNodes = new ArrayList<>();

// 基于问题类型构建子节点
switch (report.getType()) {
case PERFORMANCE:
childNodes.addAll(buildPerformanceChildNodes(parentNode, report));
break;
case AVAILABILITY:
childNodes.addAll(buildAvailabilityChildNodes(parentNode, report));
break;
case DATA:
childNodes.addAll(buildDataChildNodes(parentNode, report));
break;
case SECURITY:
childNodes.addAll(buildSecurityChildNodes(parentNode, report));
break;
case FUNCTIONAL:
childNodes.addAll(buildFunctionalChildNodes(parentNode, report));
break;
}

return childNodes;
}

/**
* 构建性能问题子节点
*/
private List<ProblemNode> buildPerformanceChildNodes(ProblemNode parentNode, ProblemReport report) {
List<ProblemNode> childNodes = new ArrayList<>();

// 响应时间问题
ProblemNode responseTimeNode = new ProblemNode();
responseTimeNode.setLevel(parentNode.getLevel() + 1);
responseTimeNode.setDescription("响应时间过长");
responseTimeNode.setType(NodeType.PERFORMANCE_ISSUE);
childNodes.add(responseTimeNode);

// 吞吐量问题
ProblemNode throughputNode = new ProblemNode();
throughputNode.setLevel(parentNode.getLevel() + 1);
throughputNode.setDescription("吞吐量下降");
throughputNode.setType(NodeType.PERFORMANCE_ISSUE);
childNodes.add(throughputNode);

// 资源使用问题
ProblemNode resourceNode = new ProblemNode();
resourceNode.setLevel(parentNode.getLevel() + 1);
resourceNode.setDescription("资源使用率过高");
resourceNode.setType(NodeType.PERFORMANCE_ISSUE);
childNodes.add(resourceNode);

return childNodes;
}

/**
* 执行Why分析
*/
private List<WhyAnalysis> performWhyAnalysis(ProblemTree problemTree) {
List<WhyAnalysis> analyses = new ArrayList<>();

// 对每个问题节点执行5Why分析
performWhyAnalysisRecursive(problemTree.getRootNode(), analyses);

return analyses;
}

/**
* 递归执行Why分析
*/
private void performWhyAnalysisRecursive(ProblemNode node, List<WhyAnalysis> analyses) {
WhyAnalysis analysis = new WhyAnalysis();
analysis.setProblemNode(node);

// 执行5个Why
List<WhyQuestion> whyQuestions = new ArrayList<>();

String currentDescription = node.getDescription();

for (int i = 1; i <= 5; i++) {
WhyQuestion question = new WhyQuestion();
question.setLevel(i);
question.setQuestion("为什么" + currentDescription + "?");

// 基于问题类型生成可能的答案
List<String> possibleAnswers = generatePossibleAnswers(currentDescription, node.getType());
question.setPossibleAnswers(possibleAnswers);

whyQuestions.add(question);

// 选择最可能的答案作为下一个问题的基础
if (!possibleAnswers.isEmpty()) {
currentDescription = possibleAnswers.get(0);
}
}

analysis.setWhyQuestions(whyQuestions);
analyses.add(analysis);

// 递归处理子节点
for (ProblemNode childNode : node.getChildren()) {
performWhyAnalysisRecursive(childNode, analyses);
}
}

/**
* 生成可能的答案
*/
private List<String> generatePossibleAnswers(String description, NodeType nodeType) {
List<String> answers = new ArrayList<>();

switch (nodeType) {
case PERFORMANCE_ISSUE:
if (description.contains("响应时间")) {
answers.add("数据库查询慢");
answers.add("网络延迟高");
answers.add("CPU使用率高");
answers.add("内存不足");
} else if (description.contains("吞吐量")) {
answers.add("系统资源不足");
answers.add("数据库连接池满");
answers.add("缓存命中率低");
}
break;
case AVAILABILITY_ISSUE:
answers.add("服务不可用");
answers.add("网络中断");
answers.add("硬件故障");
answers.add("软件bug");
break;
case DATA_ISSUE:
answers.add("数据不一致");
answers.add("数据丢失");
answers.add("数据损坏");
break;
}

return answers;
}

/**
* 识别根因
*/
private List<RootCause> identifyRootCauses(List<WhyAnalysis> analyses) {
List<RootCause> rootCauses = new ArrayList<>();

for (WhyAnalysis analysis : analyses) {
List<WhyQuestion> questions = analysis.getWhyQuestions();

// 找到第5个Why的答案作为潜在根因
if (questions.size() >= 5) {
WhyQuestion lastQuestion = questions.get(4);

for (String answer : lastQuestion.getPossibleAnswers()) {
RootCause rootCause = new RootCause();
rootCause.setDescription(answer);
rootCause.setAnalysisPath(questions);
rootCause.setConfidence(calculateRootCauseConfidence(analysis));
rootCauses.add(rootCause);
}
}
}

return rootCauses.stream()
.sorted((r1, r2) -> Double.compare(r2.getConfidence(), r1.getConfidence()))
.collect(Collectors.toList());
}

/**
* 计算根因置信度
*/
private double calculateRootCauseConfidence(WhyAnalysis analysis) {
// 基于分析路径的完整性和逻辑性计算置信度
List<WhyQuestion> questions = analysis.getWhyQuestions();

if (questions.size() < 5) {
return 0.3; // 分析不完整
}

// 检查逻辑链的完整性
double logicScore = 0.0;
for (int i = 0; i < questions.size() - 1; i++) {
if (isLogicalConnection(questions.get(i), questions.get(i + 1))) {
logicScore += 0.2;
}
}

return Math.min(logicScore, 1.0);
}

/**
* 检查逻辑连接
*/
private boolean isLogicalConnection(WhyQuestion question1, WhyQuestion question2) {
// 简单的逻辑连接检查
return question2.getQuestion().contains(question1.getPossibleAnswers().get(0));
}
}

4.2 故障树分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/**
* 故障树分析服务
*/
@Service
public class FaultTreeAnalysisService {

/**
* 构建故障树
*/
public FaultTree buildFaultTree(ProblemReport report) {
FaultTree tree = new FaultTree();

try {
// 1. 创建顶事件
FaultEvent topEvent = createTopEvent(report);
tree.setTopEvent(topEvent);

// 2. 构建中间事件
List<FaultEvent> intermediateEvents = buildIntermediateEvents(topEvent, report);
tree.setIntermediateEvents(intermediateEvents);

// 3. 构建底事件
List<FaultEvent> basicEvents = buildBasicEvents(intermediateEvents, report);
tree.setBasicEvents(basicEvents);

// 4. 构建逻辑门
List<LogicGate> logicGates = buildLogicGates(tree);
tree.setLogicGates(logicGates);

// 5. 计算故障概率
calculateFaultProbabilities(tree);

return tree;

} catch (Exception e) {
log.error("故障树构建失败", e);
throw new FaultTreeAnalysisException("故障树构建失败", e);
}
}

/**
* 创建顶事件
*/
private FaultEvent createTopEvent(ProblemReport report) {
FaultEvent topEvent = new FaultEvent();
topEvent.setId("TOP_EVENT");
topEvent.setName("系统故障");
topEvent.setDescription(report.getDescription());
topEvent.setType(EventType.TOP_EVENT);
topEvent.setProbability(1.0); // 顶事件概率为1
return topEvent;
}

/**
* 构建中间事件
*/
private List<FaultEvent> buildIntermediateEvents(FaultEvent topEvent, ProblemReport report) {
List<FaultEvent> intermediateEvents = new ArrayList<>();

// 基于问题类型构建中间事件
switch (report.getType()) {
case PERFORMANCE:
intermediateEvents.addAll(buildPerformanceIntermediateEvents());
break;
case AVAILABILITY:
intermediateEvents.addAll(buildAvailabilityIntermediateEvents());
break;
case DATA:
intermediateEvents.addAll(buildDataIntermediateEvents());
break;
case SECURITY:
intermediateEvents.addAll(buildSecurityIntermediateEvents());
break;
case FUNCTIONAL:
intermediateEvents.addAll(buildFunctionalIntermediateEvents());
break;
}

return intermediateEvents;
}

/**
* 构建性能问题中间事件
*/
private List<FaultEvent> buildPerformanceIntermediateEvents() {
List<FaultEvent> events = new ArrayList<>();

// 响应时间问题
FaultEvent responseTimeEvent = new FaultEvent();
responseTimeEvent.setId("RESPONSE_TIME_ISSUE");
responseTimeEvent.setName("响应时间问题");
responseTimeEvent.setDescription("系统响应时间过长");
responseTimeEvent.setType(EventType.INTERMEDIATE_EVENT);
events.add(responseTimeEvent);

// 吞吐量问题
FaultEvent throughputEvent = new FaultEvent();
throughputEvent.setId("THROUGHPUT_ISSUE");
throughputEvent.setName("吞吐量问题");
throughputEvent.setDescription("系统吞吐量下降");
throughputEvent.setType(EventType.INTERMEDIATE_EVENT);
events.add(throughputEvent);

// 资源使用问题
FaultEvent resourceEvent = new FaultEvent();
resourceEvent.setId("RESOURCE_ISSUE");
resourceEvent.setName("资源使用问题");
resourceEvent.setDescription("系统资源使用率过高");
resourceEvent.setType(EventType.INTERMEDIATE_EVENT);
events.add(resourceEvent);

return events;
}

/**
* 构建底事件
*/
private List<FaultEvent> buildBasicEvents(List<FaultEvent> intermediateEvents, ProblemReport report) {
List<FaultEvent> basicEvents = new ArrayList<>();

for (FaultEvent intermediateEvent : intermediateEvents) {
List<FaultEvent> childEvents = buildChildBasicEvents(intermediateEvent);
basicEvents.addAll(childEvents);
}

return basicEvents;
}

/**
* 构建子底事件
*/
private List<FaultEvent> buildChildBasicEvents(FaultEvent parentEvent) {
List<FaultEvent> childEvents = new ArrayList<>();

switch (parentEvent.getId()) {
case "RESPONSE_TIME_ISSUE":
childEvents.add(createBasicEvent("DB_SLOW_QUERY", "数据库慢查询", 0.3));
childEvents.add(createBasicEvent("NETWORK_LATENCY", "网络延迟", 0.2));
childEvents.add(createBasicEvent("CPU_HIGH_USAGE", "CPU使用率高", 0.25));
childEvents.add(createBasicEvent("MEMORY_SHORTAGE", "内存不足", 0.15));
break;
case "THROUGHPUT_ISSUE":
childEvents.add(createBasicEvent("CONNECTION_POOL_FULL", "连接池满", 0.4));
childEvents.add(createBasicEvent("CACHE_MISS", "缓存未命中", 0.3));
childEvents.add(createBasicEvent("THREAD_POOL_EXHAUSTED", "线程池耗尽", 0.3));
break;
case "RESOURCE_ISSUE":
childEvents.add(createBasicEvent("MEMORY_LEAK", "内存泄漏", 0.35));
childEvents.add(createBasicEvent("CPU_INTENSIVE_TASK", "CPU密集型任务", 0.25));
childEvents.add(createBasicEvent("DISK_IO_BOTTLENECK", "磁盘IO瓶颈", 0.2));
childEvents.add(createBasicEvent("NETWORK_BANDWIDTH", "网络带宽不足", 0.2));
break;
}

return childEvents;
}

/**
* 创建底事件
*/
private FaultEvent createBasicEvent(String id, String name, double probability) {
FaultEvent event = new FaultEvent();
event.setId(id);
event.setName(name);
event.setDescription(name);
event.setType(EventType.BASIC_EVENT);
event.setProbability(probability);
return event;
}

/**
* 构建逻辑门
*/
private List<LogicGate> buildLogicGates(FaultTree tree) {
List<LogicGate> gates = new ArrayList<>();

// 顶事件与中间事件的逻辑门
LogicGate topGate = new LogicGate();
topGate.setId("TOP_GATE");
topGate.setType(GateType.OR);
topGate.setInputEvents(tree.getIntermediateEvents());
topGate.setOutputEvent(tree.getTopEvent());
gates.add(topGate);

// 中间事件与底事件的逻辑门
for (FaultEvent intermediateEvent : tree.getIntermediateEvents()) {
List<FaultEvent> childEvents = getChildEvents(intermediateEvent, tree.getBasicEvents());

LogicGate gate = new LogicGate();
gate.setId(intermediateEvent.getId() + "_GATE");
gate.setType(GateType.OR);
gate.setInputEvents(childEvents);
gate.setOutputEvent(intermediateEvent);
gates.add(gate);
}

return gates;
}

/**
* 计算故障概率
*/
private void calculateFaultProbabilities(FaultTree tree) {
// 从底事件开始,向上计算概率
for (LogicGate gate : tree.getLogicGates()) {
double probability = calculateGateProbability(gate);
gate.getOutputEvent().setProbability(probability);
}
}

/**
* 计算逻辑门概率
*/
private double calculateGateProbability(LogicGate gate) {
switch (gate.getType()) {
case OR:
// OR门:P(A OR B) = P(A) + P(B) - P(A AND B)
return calculateOrProbability(gate.getInputEvents());
case AND:
// AND门:P(A AND B) = P(A) * P(B)
return calculateAndProbability(gate.getInputEvents());
case NOT:
// NOT门:P(NOT A) = 1 - P(A)
return 1.0 - gate.getInputEvents().get(0).getProbability();
default:
return 0.0;
}
}

/**
* 计算OR门概率
*/
private double calculateOrProbability(List<FaultEvent> events) {
if (events.isEmpty()) {
return 0.0;
}

double result = 0.0;
for (int i = 0; i < events.size(); i++) {
double term = events.get(i).getProbability();
for (int j = 0; j < i; j++) {
term *= (1.0 - events.get(j).getProbability());
}
result += term;
}

return result;
}

/**
* 计算AND门概率
*/
private double calculateAndProbability(List<FaultEvent> events) {
return events.stream()
.mapToDouble(FaultEvent::getProbability)
.reduce(1.0, (a, b) -> a * b);
}
}

五、问题解决与验证

5.1 解决方案制定

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/**
* 问题解决方案制定服务
*/
@Service
public class SolutionDesignService {

@Autowired
private SolutionTemplateService templateService;

@Autowired
private RiskAssessmentService riskAssessmentService;

/**
* 制定解决方案
*/
public SolutionDesign designSolution(ProblemLocationResult locationResult,
List<RootCause> rootCauses) {
SolutionDesign design = new SolutionDesign();

try {
// 1. 分析问题特征
ProblemCharacteristics characteristics = analyzeProblemCharacteristics(locationResult);
design.setCharacteristics(characteristics);

// 2. 选择解决方案模板
List<SolutionTemplate> templates = templateService.selectTemplates(characteristics);
design.setTemplates(templates);

// 3. 定制解决方案
List<Solution> solutions = customizeSolutions(templates, rootCauses);
design.setSolutions(solutions);

// 4. 评估解决方案
List<SolutionEvaluation> evaluations = evaluateSolutions(solutions);
design.setEvaluations(evaluations);

// 5. 选择最优解决方案
Solution optimalSolution = selectOptimalSolution(evaluations);
design.setOptimalSolution(optimalSolution);

// 6. 制定实施计划
ImplementationPlan plan = createImplementationPlan(optimalSolution);
design.setImplementationPlan(plan);

return design;

} catch (Exception e) {
log.error("解决方案制定失败", e);
throw new SolutionDesignException("解决方案制定失败", e);
}
}

/**
* 分析问题特征
*/
private ProblemCharacteristics analyzeProblemCharacteristics(ProblemLocationResult locationResult) {
ProblemCharacteristics characteristics = new ProblemCharacteristics();

// 分析问题类型
if (locationResult.getLogAnalysis().hasErrors()) {
characteristics.addType(ProblemType.ERROR);
}
if (locationResult.getPerformanceAnalysis().hasBottlenecks()) {
characteristics.addType(ProblemType.PERFORMANCE);
}
if (locationResult.getTraceAnalysis().hasAbnormalTraces()) {
characteristics.addType(ProblemType.AVAILABILITY);
}

// 分析影响范围
characteristics.setScope(assessImpactScope(locationResult));

// 分析紧急程度
characteristics.setUrgency(assessUrgency(locationResult));

// 分析复杂度
characteristics.setComplexity(assessComplexity(locationResult));

return characteristics;
}

/**
* 定制解决方案
*/
private List<Solution> customizeSolutions(List<SolutionTemplate> templates,
List<RootCause> rootCauses) {
List<Solution> solutions = new ArrayList<>();

for (SolutionTemplate template : templates) {
Solution solution = new Solution();
solution.setName(template.getName());
solution.setDescription(template.getDescription());
solution.setType(template.getType());

// 基于根因定制解决方案
List<SolutionStep> steps = customizeSolutionSteps(template.getSteps(), rootCauses);
solution.setSteps(steps);

// 计算解决方案成本
double cost = calculateSolutionCost(steps);
solution.setCost(cost);

// 估算实施时间
Duration duration = estimateImplementationTime(steps);
solution.setDuration(duration);

solutions.add(solution);
}

return solutions;
}

/**
* 定制解决方案步骤
*/
private List<SolutionStep> customizeSolutionSteps(List<SolutionStepTemplate> stepTemplates,
List<RootCause> rootCauses) {
List<SolutionStep> steps = new ArrayList<>();

for (SolutionStepTemplate template : stepTemplates) {
SolutionStep step = new SolutionStep();
step.setName(template.getName());
step.setDescription(template.getDescription());
step.setOrder(template.getOrder());

// 基于根因定制步骤
List<String> actions = customizeStepActions(template.getActions(), rootCauses);
step.setActions(actions);

// 设置步骤依赖
step.setDependencies(template.getDependencies());

// 设置验证方法
step.setValidationMethods(template.getValidationMethods());

steps.add(step);
}

return steps;
}

/**
* 评估解决方案
*/
private List<SolutionEvaluation> evaluateSolutions(List<Solution> solutions) {
List<SolutionEvaluation> evaluations = new ArrayList<>();

for (Solution solution : solutions) {
SolutionEvaluation evaluation = new SolutionEvaluation();
evaluation.setSolution(solution);

// 评估有效性
double effectiveness = evaluateEffectiveness(solution);
evaluation.setEffectiveness(effectiveness);

// 评估可行性
double feasibility = evaluateFeasibility(solution);
evaluation.setFeasibility(feasibility);

// 评估风险
double risk = riskAssessmentService.assessRisk(solution);
evaluation.setRisk(risk);

// 评估成本效益
double costBenefit = evaluateCostBenefit(solution);
evaluation.setCostBenefit(costBenefit);

// 计算综合评分
double overallScore = calculateOverallScore(evaluation);
evaluation.setOverallScore(overallScore);

evaluations.add(evaluation);
}

return evaluations.stream()
.sorted((e1, e2) -> Double.compare(e2.getOverallScore(), e1.getOverallScore()))
.collect(Collectors.toList());
}

/**
* 评估有效性
*/
private double evaluateEffectiveness(Solution solution) {
// 基于解决方案类型和历史成功率评估
double baseEffectiveness = 0.8; // 基础有效性

// 根据解决方案复杂度调整
if (solution.getSteps().size() > 5) {
baseEffectiveness -= 0.1; // 复杂解决方案有效性降低
}

// 根据历史数据调整
double historicalSuccessRate = getHistoricalSuccessRate(solution.getType());
baseEffectiveness = (baseEffectiveness + historicalSuccessRate) / 2;

return Math.max(0.0, Math.min(1.0, baseEffectiveness));
}

/**
* 评估可行性
*/
private double evaluateFeasibility(Solution solution) {
double feasibility = 1.0;

// 检查资源可用性
if (!checkResourceAvailability(solution)) {
feasibility -= 0.3;
}

// 检查技术可行性
if (!checkTechnicalFeasibility(solution)) {
feasibility -= 0.4;
}

// 检查时间可行性
if (!checkTimeFeasibility(solution)) {
feasibility -= 0.2;
}

return Math.max(0.0, feasibility);
}

/**
* 评估成本效益
*/
private double evaluateCostBenefit(Solution solution) {
double cost = solution.getCost();
double benefit = estimateSolutionBenefit(solution);

if (cost == 0) {
return benefit > 0 ? 1.0 : 0.0;
}

return Math.min(1.0, benefit / cost);
}

/**
* 计算综合评分
*/
private double calculateOverallScore(SolutionEvaluation evaluation) {
double effectiveness = evaluation.getEffectiveness();
double feasibility = evaluation.getFeasibility();
double risk = evaluation.getRisk();
double costBenefit = evaluation.getCostBenefit();

// 加权计算综合评分
return effectiveness * 0.3 + feasibility * 0.3 +
(1.0 - risk) * 0.2 + costBenefit * 0.2;
}

/**
* 创建实施计划
*/
private ImplementationPlan createImplementationPlan(Solution solution) {
ImplementationPlan plan = new ImplementationPlan();
plan.setSolution(solution);

// 制定实施时间表
List<ImplementationPhase> phases = createImplementationPhases(solution);
plan.setPhases(phases);

// 分配资源
List<ResourceAllocation> allocations = allocateResources(phases);
plan.setResourceAllocations(allocations);

// 设置里程碑
List<Milestone> milestones = createMilestones(phases);
plan.setMilestones(milestones);

// 设置风险控制措施
List<RiskControlMeasure> riskControls = createRiskControls(solution);
plan.setRiskControls(riskControls);

return plan;
}
}

5.2 解决方案验证

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/**
* 解决方案验证服务
*/
@Service
public class SolutionValidationService {

@Autowired
private TestingService testingService;

@Autowired
private MonitoringService monitoringService;

/**
* 验证解决方案
*/
public ValidationResult validateSolution(Solution solution, ProblemContext context) {
ValidationResult result = new ValidationResult();

try {
// 1. 预验证
PreValidationResult preValidation = performPreValidation(solution);
result.setPreValidation(preValidation);

if (!preValidation.isPassed()) {
result.setStatus(ValidationStatus.FAILED);
result.setFailureReason(preValidation.getFailureReason());
return result;
}

// 2. 测试环境验证
TestValidationResult testValidation = performTestValidation(solution, context);
result.setTestValidation(testValidation);

if (!testValidation.isPassed()) {
result.setStatus(ValidationStatus.FAILED);
result.setFailureReason(testValidation.getFailureReason());
return result;
}

// 3. 生产环境验证
ProductionValidationResult prodValidation = performProductionValidation(solution, context);
result.setProductionValidation(prodValidation);

if (!prodValidation.isPassed()) {
result.setStatus(ValidationStatus.FAILED);
result.setFailureReason(prodValidation.getFailureReason());
return result;
}

// 4. 综合验证结果
result.setStatus(ValidationStatus.PASSED);
result.setValidationScore(calculateValidationScore(result));

return result;

} catch (Exception e) {
log.error("解决方案验证失败", e);
result.setStatus(ValidationStatus.FAILED);
result.setFailureReason("验证过程异常: " + e.getMessage());
return result;
}
}

/**
* 执行预验证
*/
private PreValidationResult performPreValidation(Solution solution) {
PreValidationResult result = new PreValidationResult();

try {
// 1. 检查解决方案完整性
boolean isComplete = checkSolutionCompleteness(solution);
result.setCompletenessCheck(isComplete);

// 2. 检查资源可用性
boolean hasResources = checkResourceAvailability(solution);
result.setResourceCheck(hasResources);

// 3. 检查权限要求
boolean hasPermissions = checkPermissionRequirements(solution);
result.setPermissionCheck(hasPermissions);

// 4. 检查依赖关系
boolean dependenciesMet = checkDependencies(solution);
result.setDependencyCheck(dependenciesMet);

// 5. 综合预验证结果
boolean passed = isComplete && hasResources && hasPermissions && dependenciesMet;
result.setPassed(passed);

if (!passed) {
result.setFailureReason("预验证失败: 完整性=" + isComplete +
", 资源=" + hasResources +
", 权限=" + hasPermissions +
", 依赖=" + dependenciesMet);
}

return result;

} catch (Exception e) {
log.error("预验证失败", e);
result.setPassed(false);
result.setFailureReason("预验证异常: " + e.getMessage());
return result;
}
}

/**
* 执行测试环境验证
*/
private TestValidationResult performTestValidation(Solution solution, ProblemContext context) {
TestValidationResult result = new TestValidationResult();

try {
// 1. 部署到测试环境
boolean deployed = deployToTestEnvironment(solution);
result.setDeploymentSuccess(deployed);

if (!deployed) {
result.setPassed(false);
result.setFailureReason("测试环境部署失败");
return result;
}

// 2. 执行功能测试
TestResult functionalTest = testingService.executeFunctionalTest(solution);
result.setFunctionalTest(functionalTest);

// 3. 执行性能测试
TestResult performanceTest = testingService.executePerformanceTest(solution);
result.setPerformanceTest(performanceTest);

// 4. 执行压力测试
TestResult stressTest = testingService.executeStressTest(solution);
result.setStressTest(stressTest);

// 5. 执行回归测试
TestResult regressionTest = testingService.executeRegressionTest(solution);
result.setRegressionTest(regressionTest);

// 6. 综合测试结果
boolean allTestsPassed = functionalTest.isPassed() &&
performanceTest.isPassed() &&
stressTest.isPassed() &&
regressionTest.isPassed();

result.setPassed(allTestsPassed);

if (!allTestsPassed) {
result.setFailureReason("测试验证失败: 功能=" + functionalTest.isPassed() +
", 性能=" + performanceTest.isPassed() +
", 压力=" + stressTest.isPassed() +
", 回归=" + regressionTest.isPassed());
}

return result;

} catch (Exception e) {
log.error("测试验证失败", e);
result.setPassed(false);
result.setFailureReason("测试验证异常: " + e.getMessage());
return result;
}
}

/**
* 执行生产环境验证
*/
private ProductionValidationResult performProductionValidation(Solution solution, ProblemContext context) {
ProductionValidationResult result = new ProductionValidationResult();

try {
// 1. 灰度发布
boolean grayDeployment = performGrayDeployment(solution);
result.setGrayDeploymentSuccess(grayDeployment);

if (!grayDeployment) {
result.setPassed(false);
result.setFailureReason("灰度发布失败");
return result;
}

// 2. 监控关键指标
MonitoringResult monitoringResult = monitorKeyMetrics(solution, context);
result.setMonitoringResult(monitoringResult);

// 3. 验证问题解决
boolean problemResolved = verifyProblemResolution(solution, context);
result.setProblemResolved(problemResolved);

// 4. 验证无副作用
boolean noSideEffects = verifyNoSideEffects(solution, context);
result.setNoSideEffects(noSideEffects);

// 5. 综合生产验证结果
boolean passed = grayDeployment && monitoringResult.isHealthy() &&
problemResolved && noSideEffects;

result.setPassed(passed);

if (!passed) {
result.setFailureReason("生产验证失败: 灰度=" + grayDeployment +
", 监控=" + monitoringResult.isHealthy() +
", 问题解决=" + problemResolved +
", 无副作用=" + noSideEffects);
}

return result;

} catch (Exception e) {
log.error("生产验证失败", e);
result.setPassed(false);
result.setFailureReason("生产验证异常: " + e.getMessage());
return result;
}
}

/**
* 监控关键指标
*/
private MonitoringResult monitorKeyMetrics(Solution solution, ProblemContext context) {
MonitoringResult result = new MonitoringResult();

try {
// 1. 监控系统指标
SystemMetrics systemMetrics = monitoringService.collectSystemMetrics();
result.setSystemMetrics(systemMetrics);

// 2. 监控业务指标
BusinessMetrics businessMetrics = monitoringService.collectBusinessMetrics();
result.setBusinessMetrics(businessMetrics);

// 3. 监控错误率
ErrorRate errorRate = monitoringService.collectErrorRate();
result.setErrorRate(errorRate);

// 4. 监控响应时间
ResponseTime responseTime = monitoringService.collectResponseTime();
result.setResponseTime(responseTime);

// 5. 判断监控健康状态
boolean isHealthy = assessMonitoringHealth(result);
result.setHealthy(isHealthy);

return result;

} catch (Exception e) {
log.error("监控关键指标失败", e);
result.setHealthy(false);
return result;
}
}

/**
* 验证问题解决
*/
private boolean verifyProblemResolution(Solution solution, ProblemContext context) {
try {
// 1. 检查原始问题是否解决
boolean originalProblemResolved = checkOriginalProblemResolution(context);

// 2. 检查相关指标是否恢复正常
boolean metricsNormalized = checkMetricsNormalization(context);

// 3. 检查用户体验是否改善
boolean userExperienceImproved = checkUserExperienceImprovement(context);

return originalProblemResolved && metricsNormalized && userExperienceImproved;

} catch (Exception e) {
log.error("验证问题解决失败", e);
return false;
}
}

/**
* 验证无副作用
*/
private boolean verifyNoSideEffects(Solution solution, ProblemContext context) {
try {
// 1. 检查是否有新的错误
boolean noNewErrors = checkNoNewErrors(context);

// 2. 检查性能是否下降
boolean noPerformanceDegradation = checkNoPerformanceDegradation(context);

// 3. 检查功能是否正常
boolean noFunctionalIssues = checkNoFunctionalIssues(context);

return noNewErrors && noPerformanceDegradation && noFunctionalIssues;

} catch (Exception e) {
log.error("验证无副作用失败", e);
return false;
}
}

/**
* 计算验证评分
*/
private double calculateValidationScore(ValidationResult result) {
double score = 0.0;

// 预验证权重 20%
if (result.getPreValidation().isPassed()) {
score += 0.2;
}

// 测试验证权重 40%
if (result.getTestValidation().isPassed()) {
score += 0.4;
}

// 生产验证权重 40%
if (result.getProductionValidation().isPassed()) {
score += 0.4;
}

return score;
}
}

六、企业级故障排查体系

6.1 故障排查流程标准化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/**
* 故障排查流程标准化服务
*/
@Service
public class FaultTroubleshootingStandardizationService {

@Autowired
private ProcessTemplateService processTemplateService;

@Autowired
private ChecklistService checklistService;

/**
* 标准化故障排查流程
*/
public StandardizedProcess standardizeFaultTroubleshooting(ProblemType problemType) {
StandardizedProcess process = new StandardizedProcess();

try {
// 1. 选择流程模板
ProcessTemplate template = processTemplateService.selectTemplate(problemType);
process.setTemplate(template);

// 2. 创建标准步骤
List<StandardStep> steps = createStandardSteps(template);
process.setSteps(steps);

// 3. 创建检查清单
List<Checklist> checklists = checklistService.createChecklists(problemType);
process.setChecklists(checklists);

// 4. 设置时间限制
Map<String, Duration> timeLimits = setTimeLimits(steps);
process.setTimeLimits(timeLimits);

// 5. 设置升级条件
List<EscalationCondition> escalationConditions = setEscalationConditions();
process.setEscalationConditions(escalationConditions);

// 6. 设置质量检查点
List<QualityCheckpoint> qualityCheckpoints = setQualityCheckpoints(steps);
process.setQualityCheckpoints(qualityCheckpoints);

return process;

} catch (Exception e) {
log.error("故障排查流程标准化失败", e);
throw new ProcessStandardizationException("故障排查流程标准化失败", e);
}
}

/**
* 创建标准步骤
*/
private List<StandardStep> createStandardSteps(ProcessTemplate template) {
List<StandardStep> steps = new ArrayList<>();

// 1. 问题确认步骤
StandardStep confirmStep = new StandardStep();
confirmStep.setId("CONFIRM_PROBLEM");
confirmStep.setName("问题确认");
confirmStep.setDescription("确认问题现象和影响范围");
confirmStep.setOrder(1);
confirmStep.setTimeLimit(Duration.ofMinutes(5));
confirmStep.setRequired(true);
steps.add(confirmStep);

// 2. 信息收集步骤
StandardStep collectStep = new StandardStep();
collectStep.setId("COLLECT_INFO");
collectStep.setName("信息收集");
collectStep.setDescription("收集相关日志、监控数据和系统信息");
collectStep.setOrder(2);
collectStep.setTimeLimit(Duration.ofMinutes(10));
collectStep.setRequired(true);
steps.add(collectStep);

// 3. 问题定位步骤
StandardStep locateStep = new StandardStep();
locateStep.setId("LOCATE_PROBLEM");
locateStep.setName("问题定位");
locateStep.setDescription("分析收集的信息,定位问题根因");
locateStep.setOrder(3);
locateStep.setTimeLimit(Duration.ofMinutes(15));
locateStep.setRequired(true);
steps.add(locateStep);

// 4. 解决方案制定步骤
StandardStep solutionStep = new StandardStep();
solutionStep.setId("DESIGN_SOLUTION");
solutionStep.setName("解决方案制定");
solutionStep.setDescription("制定问题解决方案");
solutionStep.setOrder(4);
solutionStep.setTimeLimit(Duration.ofMinutes(10));
solutionStep.setRequired(true);
steps.add(solutionStep);

// 5. 方案实施步骤
StandardStep implementStep = new StandardStep();
implementStep.setId("IMPLEMENT_SOLUTION");
implementStep.setName("方案实施");
implementStep.setDescription("实施解决方案");
implementStep.setOrder(5);
implementStep.setTimeLimit(Duration.ofMinutes(20));
implementStep.setRequired(true);
steps.add(implementStep);

// 6. 验证修复步骤
StandardStep verifyStep = new StandardStep();
verifyStep.setId("VERIFY_FIX");
verifyStep.setName("验证修复");
verifyStep.setDescription("验证问题是否解决");
verifyStep.setOrder(6);
verifyStep.setTimeLimit(Duration.ofMinutes(5));
verifyStep.setRequired(true);
steps.add(verifyStep);

// 7. 总结复盘步骤
StandardStep summaryStep = new StandardStep();
summaryStep.setId("SUMMARY_REVIEW");
summaryStep.setName("总结复盘");
summaryStep.setDescription("总结问题处理过程和经验教训");
summaryStep.setOrder(7);
summaryStep.setTimeLimit(Duration.ofMinutes(10));
summaryStep.setRequired(false);
steps.add(summaryStep);

return steps;
}

/**
* 设置升级条件
*/
private List<EscalationCondition> setEscalationConditions() {
List<EscalationCondition> conditions = new ArrayList<>();

// 时间升级条件
EscalationCondition timeCondition = new EscalationCondition();
timeCondition.setType(EscalationType.TIME);
timeCondition.setThreshold(Duration.ofMinutes(30));
timeCondition.setAction("升级到高级工程师");
conditions.add(timeCondition);

// 影响范围升级条件
EscalationCondition impactCondition = new EscalationCondition();
impactCondition.setType(EscalationType.IMPACT);
impactCondition.setThreshold(1000); // 影响用户数
impactCondition.setAction("升级到技术负责人");
conditions.add(impactCondition);

// 严重程度升级条件
EscalationCondition severityCondition = new EscalationCondition();
severityCondition.setType(EscalationType.SEVERITY);
severityCondition.setThreshold(Severity.HIGH);
severityCondition.setAction("升级到架构师");
conditions.add(severityCondition);

return conditions;
}

/**
* 设置质量检查点
*/
private List<QualityCheckpoint> setQualityCheckpoints(List<StandardStep> steps) {
List<QualityCheckpoint> checkpoints = new ArrayList<>();

// 问题定位质量检查点
QualityCheckpoint locationCheckpoint = new QualityCheckpoint();
locationCheckpoint.setStepId("LOCATE_PROBLEM");
locationCheckpoint.setName("问题定位质量检查");
locationCheckpoint.setDescription("检查问题定位的准确性和完整性");
locationCheckpoint.setCriteria(Arrays.asList(
"问题根因是否明确",
"影响范围是否清楚",
"相关证据是否充分"
));
checkpoints.add(locationCheckpoint);

// 解决方案质量检查点
QualityCheckpoint solutionCheckpoint = new QualityCheckpoint();
solutionCheckpoint.setStepId("DESIGN_SOLUTION");
solutionCheckpoint.setName("解决方案质量检查");
solutionCheckpoint.setDescription("检查解决方案的合理性和可行性");
solutionCheckpoint.setCriteria(Arrays.asList(
"解决方案是否针对根因",
"实施风险是否可控",
"回滚方案是否完备"
));
checkpoints.add(solutionCheckpoint);

return checkpoints;
}
}

6.2 知识库与经验积累

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/**
* 故障排查知识库服务
*/
@Service
public class TroubleshootingKnowledgeBaseService {

@Autowired
private KnowledgeRepository knowledgeRepository;

@Autowired
private CaseAnalysisService caseAnalysisService;

/**
* 构建知识库
*/
public KnowledgeBase buildKnowledgeBase() {
KnowledgeBase knowledgeBase = new KnowledgeBase();

try {
// 1. 收集历史案例
List<HistoricalCase> historicalCases = collectHistoricalCases();
knowledgeBase.setHistoricalCases(historicalCases);

// 2. 分析案例模式
List<CasePattern> casePatterns = analyzeCasePatterns(historicalCases);
knowledgeBase.setCasePatterns(casePatterns);

// 3. 提取最佳实践
List<BestPractice> bestPractices = extractBestPractices(historicalCases);
knowledgeBase.setBestPractices(bestPractices);

// 4. 构建解决方案库
List<SolutionTemplate> solutionTemplates = buildSolutionTemplates(casePatterns);
knowledgeBase.setSolutionTemplates(solutionTemplates);

// 5. 构建检查清单库
List<ChecklistTemplate> checklistTemplates = buildChecklistTemplates(casePatterns);
knowledgeBase.setChecklistTemplates(checklistTemplates);

// 6. 构建工具库
List<TroubleshootingTool> tools = buildToolLibrary();
knowledgeBase.setTools(tools);

return knowledgeBase;

} catch (Exception e) {
log.error("知识库构建失败", e);
throw new KnowledgeBaseException("知识库构建失败", e);
}
}

/**
* 收集历史案例
*/
private List<HistoricalCase> collectHistoricalCases() {
return knowledgeRepository.findAllHistoricalCases();
}

/**
* 分析案例模式
*/
private List<CasePattern> analyzeCasePatterns(List<HistoricalCase> cases) {
List<CasePattern> patterns = new ArrayList<>();

// 按问题类型分组
Map<ProblemType, List<HistoricalCase>> groupedCases = cases.stream()
.collect(Collectors.groupingBy(HistoricalCase::getProblemType));

for (Map.Entry<ProblemType, List<HistoricalCase>> entry : groupedCases.entrySet()) {
ProblemType problemType = entry.getKey();
List<HistoricalCase> typeCases = entry.getValue();

CasePattern pattern = new CasePattern();
pattern.setProblemType(problemType);
pattern.setCaseCount(typeCases.size());

// 分析共同特征
List<String> commonFeatures = analyzeCommonFeatures(typeCases);
pattern.setCommonFeatures(commonFeatures);

// 分析常见根因
List<String> commonRootCauses = analyzeCommonRootCauses(typeCases);
pattern.setCommonRootCauses(commonRootCauses);

// 分析有效解决方案
List<String> effectiveSolutions = analyzeEffectiveSolutions(typeCases);
pattern.setEffectiveSolutions(effectiveSolutions);

// 分析平均解决时间
double averageResolutionTime = calculateAverageResolutionTime(typeCases);
pattern.setAverageResolutionTime(averageResolutionTime);

patterns.add(pattern);
}

return patterns;
}

/**
* 提取最佳实践
*/
private List<BestPractice> extractBestPractices(List<HistoricalCase> cases) {
List<BestPractice> practices = new ArrayList<>();

// 分析成功案例的共同特点
List<HistoricalCase> successfulCases = cases.stream()
.filter(case -> case.getResolutionTime() < Duration.ofHours(1))
.collect(Collectors.toList());

for (HistoricalCase successfulCase : successfulCases) {
BestPractice practice = new BestPractice();
practice.setProblemType(successfulCase.getProblemType());
practice.setDescription(successfulCase.getResolutionDescription());
practice.setEffectiveness(successfulCase.getEffectiveness());
practice.setApplicability(successfulCase.getApplicability());
practices.add(practice);
}

return practices.stream()
.sorted((p1, p2) -> Double.compare(p2.getEffectiveness(), p1.getEffectiveness()))
.collect(Collectors.toList());
}

/**
* 构建解决方案模板
*/
private List<SolutionTemplate> buildSolutionTemplates(List<CasePattern> patterns) {
List<SolutionTemplate> templates = new ArrayList<>();

for (CasePattern pattern : patterns) {
SolutionTemplate template = new SolutionTemplate();
template.setProblemType(pattern.getProblemType());
template.setName(pattern.getProblemType().getName() + "解决方案模板");
template.setDescription("基于" + pattern.getCaseCount() + "个历史案例总结的解决方案");

// 构建解决方案步骤
List<SolutionStepTemplate> steps = buildSolutionSteps(pattern);
template.setSteps(steps);

// 设置预期效果
template.setExpectedEffectiveness(pattern.getAverageResolutionTime());

templates.add(template);
}

return templates;
}

/**
* 构建解决方案步骤
*/
private List<SolutionStepTemplate> buildSolutionSteps(CasePattern pattern) {
List<SolutionStepTemplate> steps = new ArrayList<>();

// 基于常见根因构建步骤
for (String rootCause : pattern.getCommonRootCauses()) {
SolutionStepTemplate step = new SolutionStepTemplate();
step.setName("处理" + rootCause);
step.setDescription("针对" + rootCause + "的处理步骤");
step.setOrder(steps.size() + 1);

// 基于有效解决方案设置动作
List<String> actions = pattern.getEffectiveSolutions().stream()
.filter(solution -> solution.contains(rootCause))
.collect(Collectors.toList());
step.setActions(actions);

steps.add(step);
}

return steps;
}

/**
* 构建检查清单模板
*/
private List<ChecklistTemplate> buildChecklistTemplates(List<CasePattern> patterns) {
List<ChecklistTemplate> templates = new ArrayList<>();

for (CasePattern pattern : patterns) {
ChecklistTemplate template = new ChecklistTemplate();
template.setProblemType(pattern.getProblemType());
template.setName(pattern.getProblemType().getName() + "检查清单");

// 基于共同特征构建检查项
List<ChecklistItem> items = new ArrayList<>();
for (String feature : pattern.getCommonFeatures()) {
ChecklistItem item = new ChecklistItem();
item.setDescription("检查" + feature);
item.setRequired(true);
items.add(item);
}

template.setItems(items);
templates.add(template);
}

return templates;
}

/**
* 构建工具库
*/
private List<TroubleshootingTool> buildToolLibrary() {
List<TroubleshootingTool> tools = new ArrayList<>();

// 日志分析工具
TroubleshootingTool logTool = new TroubleshootingTool();
logTool.setName("日志分析工具");
logTool.setDescription("用于分析系统日志,识别错误和异常");
logTool.setCategory(ToolCategory.LOG_ANALYSIS);
logTool.setUsage("分析错误日志、异常堆栈、性能日志");
tools.add(logTool);

// 性能监控工具
TroubleshootingTool perfTool = new TroubleshootingTool();
perfTool.setName("性能监控工具");
perfTool.setDescription("用于监控系统性能指标");
perfTool.setCategory(ToolCategory.PERFORMANCE_MONITORING);
perfTool.setUsage("监控CPU、内存、磁盘、网络使用率");
tools.add(perfTool);

// 链路追踪工具
TroubleshootingTool traceTool = new TroubleshootingTool();
traceTool.setName("链路追踪工具");
traceTool.setDescription("用于追踪请求调用链路");
traceTool.setCategory(ToolCategory.TRACE_ANALYSIS);
traceTool.setUsage("分析请求调用路径、性能瓶颈");
tools.add(traceTool);

// 数据库分析工具
TroubleshootingTool dbTool = new TroubleshootingTool();
dbTool.setName("数据库分析工具");
dbTool.setDescription("用于分析数据库性能问题");
dbTool.setCategory(ToolCategory.DATABASE_ANALYSIS);
dbTool.setUsage("分析慢查询、锁等待、死锁");
tools.add(dbTool);

return tools;
}
}

七、最佳实践与总结

7.1 线上问题排查最佳实践

  1. 建立系统化排查流程

    • 标准化问题分类和优先级
    • 建立完整的排查步骤和检查清单
    • 设置时间限制和升级条件
  2. 完善监控和告警体系

    • 建立多层次的监控体系
    • 设置合理的告警阈值
    • 实现智能告警和降噪
  3. 积累知识和经验

    • 建立故障案例库
    • 总结最佳实践
    • 持续改进排查流程
  4. 提升团队能力

    • 定期进行故障演练
    • 分享排查经验
    • 建立知识传承机制

7.2 架构师级排查技能

  1. 系统性思维

    • 从全局角度分析问题
    • 理解系统架构和依赖关系
    • 识别问题的根本原因
  2. 快速定位能力

    • 熟练使用各种排查工具
    • 掌握高效的排查方法
    • 具备敏锐的问题嗅觉
  3. 解决方案设计

    • 制定合理的解决方案
    • 评估方案的风险和收益
    • 确保方案的可行性
  4. 团队协作能力

    • 有效沟通问题状况
    • 协调各方资源
    • 指导团队解决问题

7.3 持续改进建议

  1. 建立反馈机制

    • 收集问题处理反馈
    • 分析处理效果
    • 持续优化流程
  2. 技术能力提升

    • 学习新的排查技术
    • 掌握新的工具和方法
    • 跟上技术发展趋势
  3. 知识管理

    • 建立知识库
    • 分享经验教训
    • 形成团队知识资产

总结

线上问题排查是架构师的核心技能之一,通过系统化的问题排查思路、高效的定位方法和完善的解决方案,能够快速识别和解决线上问题,确保系统的高可用性。本文从问题排查思路到根因分析,从基础方法到企业级实践,系统梳理了线上问题排查的完整解决方案。

关键要点:

  1. 系统化排查流程:标准化的问题分类、定位和解决流程
  2. 高效定位方法:日志分析、性能监控、链路追踪等综合手段
  3. 根因分析技术:5Why分析、故障树分析等科学方法
  4. 企业级实践:知识库建设、流程标准化、团队能力提升

通过深入理解这些技术要点,架构师能够建立完善的故障排查体系,提升问题处理效率,确保企业级应用的稳定运行。