前言

微服务跨库查询作为分布式系统中的重要挑战,直接影响着数据一致性和查询性能。通过合理的跨库查询策略和数据聚合方案,能够在不破坏微服务边界的前提下实现复杂的数据查询需求,确保系统的稳定运行。本文从跨库查询策略到数据聚合方案,从基础实现到企业级应用,系统梳理微服务跨库查询的完整解决方案。

一、微服务跨库查询架构设计

1.1 微服务跨库查询整体架构

1.2 跨库查询策略架构

二、跨库查询策略实现

2.1 服务间调用策略

2.1.1 服务间调用服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/**
* 服务间调用服务
*/
@Service
public class InterServiceCallService {

@Autowired
private RestTemplate restTemplate;

@Autowired
private FeignClientRegistry feignClientRegistry;

@Autowired
private CircuitBreakerRegistry circuitBreakerRegistry;

private final String USER_SERVICE_URL = "http://user-service";
private final String ORDER_SERVICE_URL = "http://order-service";
private final String PRODUCT_SERVICE_URL = "http://product-service";
private final String PAYMENT_SERVICE_URL = "http://payment-service";

/**
* 跨服务查询用户订单信息
*/
public UserOrderInfo getUserOrderInfo(Long userId) {
try {
// 1. 获取用户信息
UserInfo userInfo = getUserInfo(userId);

// 2. 获取用户订单列表
List<OrderInfo> orders = getUserOrders(userId);

// 3. 获取订单商品信息
List<OrderProductInfo> orderProducts = getOrderProducts(orders);

// 4. 聚合数据
UserOrderInfo userOrderInfo = aggregateUserOrderInfo(userInfo, orders, orderProducts);

return userOrderInfo;

} catch (Exception e) {
log.error("跨服务查询用户订单信息失败", e);
throw new CrossDatabaseQueryException("跨服务查询用户订单信息失败", e);
}
}

/**
* 获取用户信息
*/
private UserInfo getUserInfo(Long userId) {
try {
String url = USER_SERVICE_URL + "/api/users/" + userId;

ResponseEntity<UserInfo> response = restTemplate.getForEntity(url, UserInfo.class);

if (response.getStatusCode().is2xxSuccessful()) {
return response.getBody();
} else {
throw new ServiceCallException("获取用户信息失败: " + response.getStatusCode());
}

} catch (Exception e) {
log.error("获取用户信息失败", e);
throw new ServiceCallException("获取用户信息失败", e);
}
}

/**
* 获取用户订单列表
*/
private List<OrderInfo> getUserOrders(Long userId) {
try {
String url = ORDER_SERVICE_URL + "/api/orders?userId=" + userId;

ResponseEntity<List<OrderInfo>> response = restTemplate.exchange(
url, HttpMethod.GET, null, new ParameterizedTypeReference<List<OrderInfo>>() {});

if (response.getStatusCode().is2xxSuccessful()) {
return response.getBody();
} else {
throw new ServiceCallException("获取用户订单列表失败: " + response.getStatusCode());
}

} catch (Exception e) {
log.error("获取用户订单列表失败", e);
throw new ServiceCallException("获取用户订单列表失败", e);
}
}

/**
* 获取订单商品信息
*/
private List<OrderProductInfo> getOrderProducts(List<OrderInfo> orders) {
try {
List<OrderProductInfo> orderProducts = new ArrayList<>();

for (OrderInfo order : orders) {
String url = PRODUCT_SERVICE_URL + "/api/products/order/" + order.getId();

ResponseEntity<List<ProductInfo>> response = restTemplate.exchange(
url, HttpMethod.GET, null, new ParameterizedTypeReference<List<ProductInfo>>() {});

if (response.getStatusCode().is2xxSuccessful()) {
List<ProductInfo> products = response.getBody();
for (ProductInfo product : products) {
OrderProductInfo orderProduct = new OrderProductInfo();
orderProduct.setOrderId(order.getId());
orderProduct.setProductId(product.getId());
orderProduct.setProductName(product.getName());
orderProduct.setProductPrice(product.getPrice());
orderProduct.setQuantity(product.getQuantity());
orderProducts.add(orderProduct);
}
}
}

return orderProducts;

} catch (Exception e) {
log.error("获取订单商品信息失败", e);
throw new ServiceCallException("获取订单商品信息失败", e);
}
}

/**
* 聚合用户订单信息
*/
private UserOrderInfo aggregateUserOrderInfo(UserInfo userInfo, List<OrderInfo> orders,
List<OrderProductInfo> orderProducts) {
try {
UserOrderInfo userOrderInfo = new UserOrderInfo();
userOrderInfo.setUserId(userInfo.getId());
userOrderInfo.setUserName(userInfo.getName());
userOrderInfo.setUserEmail(userInfo.getEmail());
userOrderInfo.setUserPhone(userInfo.getPhone());

// 聚合订单信息
List<OrderDetailInfo> orderDetails = new ArrayList<>();
for (OrderInfo order : orders) {
OrderDetailInfo orderDetail = new OrderDetailInfo();
orderDetail.setOrderId(order.getId());
orderDetail.setOrderNo(order.getOrderNo());
orderDetail.setOrderStatus(order.getStatus());
orderDetail.setOrderAmount(order.getAmount());
orderDetail.setCreateTime(order.getCreateTime());

// 聚合商品信息
List<OrderProductInfo> orderProductsForOrder = orderProducts.stream()
.filter(op -> op.getOrderId().equals(order.getId()))
.collect(Collectors.toList());
orderDetail.setProducts(orderProductsForOrder);

orderDetails.add(orderDetail);
}

userOrderInfo.setOrders(orderDetails);

return userOrderInfo;

} catch (Exception e) {
log.error("聚合用户订单信息失败", e);
throw new CrossDatabaseQueryException("聚合用户订单信息失败", e);
}
}

/**
* 并行查询多个服务
*/
public CompletableFuture<MultiServiceQueryResult> queryMultipleServicesAsync(
MultiServiceQueryRequest request) {
try {
CompletableFuture<UserInfo> userFuture = CompletableFuture.supplyAsync(() -> {
return getUserInfo(request.getUserId());
});

CompletableFuture<List<OrderInfo>> ordersFuture = CompletableFuture.supplyAsync(() -> {
return getUserOrders(request.getUserId());
});

CompletableFuture<List<ProductInfo>> productsFuture = CompletableFuture.supplyAsync(() -> {
return getRecommendedProducts(request.getUserId());
});

CompletableFuture<List<PaymentInfo>> paymentsFuture = CompletableFuture.supplyAsync(() -> {
return getUserPayments(request.getUserId());
});

// 等待所有查询完成
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
userFuture, ordersFuture, productsFuture, paymentsFuture);

return allFutures.thenApply(v -> {
MultiServiceQueryResult result = new MultiServiceQueryResult();
try {
result.setUserInfo(userFuture.get());
result.setOrders(ordersFuture.get());
result.setProducts(productsFuture.get());
result.setPayments(paymentsFuture.get());
result.setStatus(QueryStatus.SUCCESS);
} catch (Exception e) {
result.setStatus(QueryStatus.FAILED);
result.setErrorMessage(e.getMessage());
}
return result;
});

} catch (Exception e) {
log.error("并行查询多个服务失败", e);
CompletableFuture<MultiServiceQueryResult> failedFuture = new CompletableFuture<>();
failedFuture.completeExceptionally(e);
return failedFuture;
}
}

/**
* 获取推荐商品
*/
private List<ProductInfo> getRecommendedProducts(Long userId) {
try {
String url = PRODUCT_SERVICE_URL + "/api/products/recommend?userId=" + userId;

ResponseEntity<List<ProductInfo>> response = restTemplate.exchange(
url, HttpMethod.GET, null, new ParameterizedTypeReference<List<ProductInfo>>() {});

if (response.getStatusCode().is2xxSuccessful()) {
return response.getBody();
} else {
throw new ServiceCallException("获取推荐商品失败: " + response.getStatusCode());
}

} catch (Exception e) {
log.error("获取推荐商品失败", e);
throw new ServiceCallException("获取推荐商品失败", e);
}
}

/**
* 获取用户支付信息
*/
private List<PaymentInfo> getUserPayments(Long userId) {
try {
String url = PAYMENT_SERVICE_URL + "/api/payments?userId=" + userId;

ResponseEntity<List<PaymentInfo>> response = restTemplate.exchange(
url, HttpMethod.GET, null, new ParameterizedTypeReference<List<PaymentInfo>>() {});

if (response.getStatusCode().is2xxSuccessful()) {
return response.getBody();
} else {
throw new ServiceCallException("获取用户支付信息失败: " + response.getStatusCode());
}

} catch (Exception e) {
log.error("获取用户支付信息失败", e);
throw new ServiceCallException("获取用户支付信息失败", e);
}
}

/**
* 使用Feign客户端查询
*/
public UserOrderInfo getUserOrderInfoWithFeign(Long userId) {
try {
// 获取Feign客户端
UserServiceClient userServiceClient = feignClientRegistry.getClient(UserServiceClient.class);
OrderServiceClient orderServiceClient = feignClientRegistry.getClient(OrderServiceClient.class);
ProductServiceClient productServiceClient = feignClientRegistry.getClient(ProductServiceClient.class);

// 调用服务
UserInfo userInfo = userServiceClient.getUserById(userId);
List<OrderInfo> orders = orderServiceClient.getOrdersByUserId(userId);

// 获取订单商品信息
List<OrderProductInfo> orderProducts = new ArrayList<>();
for (OrderInfo order : orders) {
List<ProductInfo> products = productServiceClient.getProductsByOrderId(order.getId());
for (ProductInfo product : products) {
OrderProductInfo orderProduct = new OrderProductInfo();
orderProduct.setOrderId(order.getId());
orderProduct.setProductId(product.getId());
orderProduct.setProductName(product.getName());
orderProduct.setProductPrice(product.getPrice());
orderProduct.setQuantity(product.getQuantity());
orderProducts.add(orderProduct);
}
}

// 聚合数据
return aggregateUserOrderInfo(userInfo, orders, orderProducts);

} catch (Exception e) {
log.error("使用Feign客户端查询失败", e);
throw new CrossDatabaseQueryException("使用Feign客户端查询失败", e);
}
}
}

2.2 数据聚合策略

2.2.1 数据聚合服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/**
* 数据聚合服务
*/
@Service
public class DataAggregationService {

@Autowired
private InterServiceCallService interServiceCallService;

@Autowired
private RedisTemplate<String, Object> redisTemplate;

@Autowired
private ElasticsearchTemplate elasticsearchTemplate;

private final String AGGREGATION_CACHE_PREFIX = "aggregation_cache:";
private final long AGGREGATION_CACHE_EXPIRE = 1800; // 30分钟

/**
* 聚合用户完整信息
*/
public UserCompleteInfo aggregateUserCompleteInfo(Long userId) {
try {
// 从缓存获取
String cacheKey = AGGREGATION_CACHE_PREFIX + "user_complete:" + userId;
UserCompleteInfo cachedInfo = (UserCompleteInfo) redisTemplate.opsForValue().get(cacheKey);

if (cachedInfo != null) {
return cachedInfo;
}

// 并行查询多个服务
CompletableFuture<UserInfo> userFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getUserInfo(userId);
});

CompletableFuture<List<OrderInfo>> ordersFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getUserOrders(userId);
});

CompletableFuture<List<ProductInfo>> productsFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getRecommendedProducts(userId);
});

CompletableFuture<List<PaymentInfo>> paymentsFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getUserPayments(userId);
});

// 等待所有查询完成
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
userFuture, ordersFuture, productsFuture, paymentsFuture);

allFutures.get(); // 等待完成

// 聚合数据
UserCompleteInfo userCompleteInfo = new UserCompleteInfo();
userCompleteInfo.setUserId(userId);
userCompleteInfo.setUserInfo(userFuture.get());
userCompleteInfo.setOrders(ordersFuture.get());
userCompleteInfo.setRecommendedProducts(productsFuture.get());
userCompleteInfo.setPayments(paymentsFuture.get());

// 计算统计信息
calculateUserStatistics(userCompleteInfo);

// 缓存结果
redisTemplate.opsForValue().set(cacheKey, userCompleteInfo,
Duration.ofSeconds(AGGREGATION_CACHE_EXPIRE));

return userCompleteInfo;

} catch (Exception e) {
log.error("聚合用户完整信息失败", e);
throw new CrossDatabaseQueryException("聚合用户完整信息失败", e);
}
}

/**
* 计算用户统计信息
*/
private void calculateUserStatistics(UserCompleteInfo userCompleteInfo) {
try {
UserStatistics statistics = new UserStatistics();

// 订单统计
List<OrderInfo> orders = userCompleteInfo.getOrders();
if (orders != null && !orders.isEmpty()) {
statistics.setTotalOrders(orders.size());
statistics.setTotalOrderAmount(orders.stream()
.mapToDouble(OrderInfo::getAmount)
.sum());

// 按状态统计
Map<String, Long> statusCount = orders.stream()
.collect(Collectors.groupingBy(OrderInfo::getStatus, Collectors.counting()));
statistics.setOrderStatusCount(statusCount);

// 按时间统计
Map<String, Long> timeCount = orders.stream()
.collect(Collectors.groupingBy(order ->
order.getCreateTime().toInstant().atZone(ZoneId.systemDefault()).toLocalDate().toString(),
Collectors.counting()));
statistics.setOrderTimeCount(timeCount);
}

// 支付统计
List<PaymentInfo> payments = userCompleteInfo.getPayments();
if (payments != null && !payments.isEmpty()) {
statistics.setTotalPayments(payments.size());
statistics.setTotalPaymentAmount(payments.stream()
.mapToDouble(PaymentInfo::getAmount)
.sum());

// 按支付方式统计
Map<String, Long> paymentMethodCount = payments.stream()
.collect(Collectors.groupingBy(PaymentInfo::getPaymentMethod, Collectors.counting()));
statistics.setPaymentMethodCount(paymentMethodCount);
}

userCompleteInfo.setStatistics(statistics);

} catch (Exception e) {
log.error("计算用户统计信息失败", e);
}
}

/**
* 聚合订单详细信息
*/
public OrderDetailInfo aggregateOrderDetailInfo(Long orderId) {
try {
// 从缓存获取
String cacheKey = AGGREGATION_CACHE_PREFIX + "order_detail:" + orderId;
OrderDetailInfo cachedInfo = (OrderDetailInfo) redisTemplate.opsForValue().get(cacheKey);

if (cachedInfo != null) {
return cachedInfo;
}

// 并行查询
CompletableFuture<OrderInfo> orderFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getOrderInfo(orderId);
});

CompletableFuture<List<ProductInfo>> productsFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getOrderProducts(orderId);
});

CompletableFuture<UserInfo> userFuture = CompletableFuture.supplyAsync(() -> {
OrderInfo order = orderFuture.join();
return interServiceCallService.getUserInfo(order.getUserId());
});

CompletableFuture<List<PaymentInfo>> paymentsFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getOrderPayments(orderId);
});

// 等待完成
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
orderFuture, productsFuture, userFuture, paymentsFuture);
allFutures.get();

// 聚合数据
OrderDetailInfo orderDetailInfo = new OrderDetailInfo();
orderDetailInfo.setOrderInfo(orderFuture.get());
orderDetailInfo.setProducts(productsFuture.get());
orderDetailInfo.setUserInfo(userFuture.get());
orderDetailInfo.setPayments(paymentsFuture.get());

// 缓存结果
redisTemplate.opsForValue().set(cacheKey, orderDetailInfo,
Duration.ofSeconds(AGGREGATION_CACHE_EXPIRE));

return orderDetailInfo;

} catch (Exception e) {
log.error("聚合订单详细信息失败", e);
throw new CrossDatabaseQueryException("聚合订单详细信息失败", e);
}
}

/**
* 聚合商品销售统计
*/
public ProductSalesStatistics aggregateProductSalesStatistics(Long productId, Date startTime, Date endTime) {
try {
// 从缓存获取
String cacheKey = AGGREGATION_CACHE_PREFIX + "product_sales:" + productId + ":" +
startTime.getTime() + ":" + endTime.getTime();
ProductSalesStatistics cachedStats = (ProductSalesStatistics) redisTemplate.opsForValue().get(cacheKey);

if (cachedStats != null) {
return cachedStats;
}

// 并行查询
CompletableFuture<ProductInfo> productFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getProductInfo(productId);
});

CompletableFuture<List<OrderInfo>> ordersFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getProductOrders(productId, startTime, endTime);
});

CompletableFuture<List<PaymentInfo>> paymentsFuture = CompletableFuture.supplyAsync(() -> {
return interServiceCallService.getProductPayments(productId, startTime, endTime);
});

// 等待完成
CompletableFuture<Void> allFutures = CompletableFuture.allOf(
productFuture, ordersFuture, paymentsFuture);
allFutures.get();

// 聚合数据
ProductSalesStatistics statistics = new ProductSalesStatistics();
statistics.setProductInfo(productFuture.get());
statistics.setTotalOrders(ordersFuture.get().size());
statistics.setTotalSales(ordersFuture.get().stream()
.mapToDouble(OrderInfo::getAmount)
.sum());
statistics.setTotalPayments(paymentsFuture.get().size());
statistics.setTotalPaymentAmount(paymentsFuture.get().stream()
.mapToDouble(PaymentInfo::getAmount)
.sum());

// 计算趋势
calculateSalesTrend(statistics, ordersFuture.get());

// 缓存结果
redisTemplate.opsForValue().set(cacheKey, statistics,
Duration.ofSeconds(AGGREGATION_CACHE_EXPIRE));

return statistics;

} catch (Exception e) {
log.error("聚合商品销售统计失败", e);
throw new CrossDatabaseQueryException("聚合商品销售统计失败", e);
}
}

/**
* 计算销售趋势
*/
private void calculateSalesTrend(ProductSalesStatistics statistics, List<OrderInfo> orders) {
try {
// 按日期分组统计
Map<String, Double> dailySales = orders.stream()
.collect(Collectors.groupingBy(order ->
order.getCreateTime().toInstant().atZone(ZoneId.systemDefault()).toLocalDate().toString(),
Collectors.summingDouble(OrderInfo::getAmount)));

statistics.setDailySalesTrend(dailySales);

// 按周分组统计
Map<String, Double> weeklySales = orders.stream()
.collect(Collectors.groupingBy(order -> {
LocalDate date = order.getCreateTime().toInstant().atZone(ZoneId.systemDefault()).toLocalDate();
return date.getYear() + "-W" + date.get(WeekFields.ISO.weekOfYear());
}, Collectors.summingDouble(OrderInfo::getAmount)));

statistics.setWeeklySalesTrend(weeklySales);

// 按月分组统计
Map<String, Double> monthlySales = orders.stream()
.collect(Collectors.groupingBy(order -> {
LocalDate date = order.getCreateTime().toInstant().atZone(ZoneId.systemDefault()).toLocalDate();
return date.getYear() + "-" + String.format("%02d", date.getMonthValue());
}, Collectors.summingDouble(OrderInfo::getAmount)));

statistics.setMonthlySalesTrend(monthlySales);

} catch (Exception e) {
log.error("计算销售趋势失败", e);
}
}

/**
* 使用Elasticsearch聚合查询
*/
public SearchResult aggregateSearchResults(SearchRequest request) {
try {
// 构建搜索查询
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();

if (request.getKeyword() != null && !request.getKeyword().trim().isEmpty()) {
boolQuery.must(QueryBuilders.multiMatchQuery(request.getKeyword(),
"name", "description", "tags"));
}

if (request.getCategory() != null) {
boolQuery.filter(QueryBuilders.termQuery("category", request.getCategory()));
}

if (request.getPriceMin() != null) {
boolQuery.filter(QueryBuilders.rangeQuery("price").gte(request.getPriceMin()));
}

if (request.getPriceMax() != null) {
boolQuery.filter(QueryBuilders.rangeQuery("price").lte(request.getPriceMax()));
}

// 构建聚合查询
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(boolQuery);
searchSourceBuilder.from(request.getFrom());
searchSourceBuilder.size(request.getSize());

// 添加聚合
searchSourceBuilder.aggregation(AggregationBuilders.terms("category_agg")
.field("category")
.size(10));

searchSourceBuilder.aggregation(AggregationBuilders.range("price_agg")
.field("price")
.addRange("0-100", 0, 100)
.addRange("100-500", 100, 500)
.addRange("500-1000", 500, 1000)
.addRange("1000+", 1000, Double.MAX_VALUE));

searchSourceBuilder.aggregation(AggregationBuilders.stats("price_stats")
.field("price"));

// 执行搜索
SearchRequest searchRequest = new SearchRequest("products");
searchRequest.source(searchSourceBuilder);

SearchResponse response = elasticsearchTemplate.search(searchRequest, RequestOptions.DEFAULT);

// 处理结果
SearchResult result = new SearchResult();
result.setTotalHits(response.getHits().getTotalHits().value);
result.setTook(response.getTook().millis());

// 处理搜索结果
List<SearchHit> hits = Arrays.asList(response.getHits().getHits());
List<ProductInfo> products = hits.stream()
.map(hit -> {
Map<String, Object> source = hit.getSourceAsMap();
ProductInfo product = new ProductInfo();
product.setId(Long.valueOf(source.get("id").toString()));
product.setName(source.get("name").toString());
product.setDescription(source.get("description").toString());
product.setPrice(Double.valueOf(source.get("price").toString()));
product.setCategory(source.get("category").toString());
return product;
})
.collect(Collectors.toList());

result.setProducts(products);

// 处理聚合结果
Map<String, Object> aggregations = new HashMap<>();
response.getAggregations().asMap().forEach((name, agg) -> {
aggregations.put(name, agg);
});
result.setAggregations(aggregations);

return result;

} catch (Exception e) {
log.error("使用Elasticsearch聚合查询失败", e);
throw new CrossDatabaseQueryException("使用Elasticsearch聚合查询失败", e);
}
}
}

2.3 事件驱动策略

2.3.1 事件驱动服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/**
* 事件驱动服务
*/
@Service
public class EventDrivenService {

@Autowired
private RabbitTemplate rabbitTemplate;

@Autowired
private RedisTemplate<String, Object> redisTemplate;

@Autowired
private DataAggregationService dataAggregationService;

private final String EVENT_QUEUE_PREFIX = "cross_db_query.event.";
private final String EVENT_CACHE_PREFIX = "event_cache:";

/**
* 发布跨库查询事件
*/
public void publishCrossDatabaseQueryEvent(CrossDatabaseQueryEvent event) {
try {
// 设置事件ID
if (event.getEventId() == null) {
event.setEventId(UUID.randomUUID().toString());
}

// 设置时间戳
event.setTimestamp(new Date());

// 发布到消息队列
String queueName = EVENT_QUEUE_PREFIX + event.getEventType();
rabbitTemplate.convertAndSend(queueName, event);

log.info("发布跨库查询事件成功: {}", event.getEventId());

} catch (Exception e) {
log.error("发布跨库查询事件失败", e);
throw new CrossDatabaseQueryException("发布跨库查询事件失败", e);
}
}

/**
* 处理用户信息更新事件
*/
@RabbitListener(queues = "cross_db_query.event.user.updated")
public void handleUserUpdatedEvent(UserUpdatedEvent event) {
try {
log.info("处理用户信息更新事件: {}", event.getUserId());

// 清除相关缓存
clearUserRelatedCache(event.getUserId());

// 更新聚合数据
updateUserAggregatedData(event.getUserId());

// 发布数据更新事件
DataUpdatedEvent dataUpdatedEvent = new DataUpdatedEvent();
dataUpdatedEvent.setEventId(UUID.randomUUID().toString());
dataUpdatedEvent.setEventType("USER_DATA_UPDATED");
dataUpdatedEvent.setUserId(event.getUserId());
dataUpdatedEvent.setTimestamp(new Date());

publishCrossDatabaseQueryEvent(dataUpdatedEvent);

} catch (Exception e) {
log.error("处理用户信息更新事件失败", e);
}
}

/**
* 处理订单创建事件
*/
@RabbitListener(queues = "cross_db_query.event.order.created")
public void handleOrderCreatedEvent(OrderCreatedEvent event) {
try {
log.info("处理订单创建事件: {}", event.getOrderId());

// 清除相关缓存
clearOrderRelatedCache(event.getOrderId());

// 更新用户聚合数据
updateUserAggregatedData(event.getUserId());

// 更新商品聚合数据
updateProductAggregatedData(event.getProductId());

// 发布数据更新事件
DataUpdatedEvent dataUpdatedEvent = new DataUpdatedEvent();
dataUpdatedEvent.setEventId(UUID.randomUUID().toString());
dataUpdatedEvent.setEventType("ORDER_DATA_UPDATED");
dataUpdatedEvent.setOrderId(event.getOrderId());
dataUpdatedEvent.setUserId(event.getUserId());
dataUpdatedEvent.setTimestamp(new Date());

publishCrossDatabaseQueryEvent(dataUpdatedEvent);

} catch (Exception e) {
log.error("处理订单创建事件失败", e);
}
}

/**
* 处理支付完成事件
*/
@RabbitListener(queues = "cross_db_query.event.payment.completed")
public void handlePaymentCompletedEvent(PaymentCompletedEvent event) {
try {
log.info("处理支付完成事件: {}", event.getPaymentId());

// 清除相关缓存
clearPaymentRelatedCache(event.getPaymentId());

// 更新订单聚合数据
updateOrderAggregatedData(event.getOrderId());

// 更新用户聚合数据
updateUserAggregatedData(event.getUserId());

// 发布数据更新事件
DataUpdatedEvent dataUpdatedEvent = new DataUpdatedEvent();
dataUpdatedEvent.setEventId(UUID.randomUUID().toString());
dataUpdatedEvent.setEventType("PAYMENT_DATA_UPDATED");
dataUpdatedEvent.setPaymentId(event.getPaymentId());
dataUpdatedEvent.setOrderId(event.getOrderId());
dataUpdatedEvent.setUserId(event.getUserId());
dataUpdatedEvent.setTimestamp(new Date());

publishCrossDatabaseQueryEvent(dataUpdatedEvent);

} catch (Exception e) {
log.error("处理支付完成事件失败", e);
}
}

/**
* 清除用户相关缓存
*/
private void clearUserRelatedCache(Long userId) {
try {
String pattern = EVENT_CACHE_PREFIX + "user_*:" + userId;
Set<String> keys = redisTemplate.keys(pattern);

if (keys != null && !keys.isEmpty()) {
redisTemplate.delete(keys);
}

log.info("清除用户相关缓存成功: {}", userId);

} catch (Exception e) {
log.error("清除用户相关缓存失败", e);
}
}

/**
* 清除订单相关缓存
*/
private void clearOrderRelatedCache(Long orderId) {
try {
String pattern = EVENT_CACHE_PREFIX + "order_*:" + orderId;
Set<String> keys = redisTemplate.keys(pattern);

if (keys != null && !keys.isEmpty()) {
redisTemplate.delete(keys);
}

log.info("清除订单相关缓存成功: {}", orderId);

} catch (Exception e) {
log.error("清除订单相关缓存失败", e);
}
}

/**
* 清除支付相关缓存
*/
private void clearPaymentRelatedCache(Long paymentId) {
try {
String pattern = EVENT_CACHE_PREFIX + "payment_*:" + paymentId;
Set<String> keys = redisTemplate.keys(pattern);

if (keys != null && !keys.isEmpty()) {
redisTemplate.delete(keys);
}

log.info("清除支付相关缓存成功: {}", paymentId);

} catch (Exception e) {
log.error("清除支付相关缓存失败", e);
}
}

/**
* 更新用户聚合数据
*/
private void updateUserAggregatedData(Long userId) {
try {
// 异步更新用户聚合数据
CompletableFuture.runAsync(() -> {
try {
dataAggregationService.aggregateUserCompleteInfo(userId);
log.info("更新用户聚合数据成功: {}", userId);
} catch (Exception e) {
log.error("更新用户聚合数据失败: {}", userId, e);
}
});

} catch (Exception e) {
log.error("更新用户聚合数据失败", e);
}
}

/**
* 更新订单聚合数据
*/
private void updateOrderAggregatedData(Long orderId) {
try {
// 异步更新订单聚合数据
CompletableFuture.runAsync(() -> {
try {
dataAggregationService.aggregateOrderDetailInfo(orderId);
log.info("更新订单聚合数据成功: {}", orderId);
} catch (Exception e) {
log.error("更新订单聚合数据失败: {}", orderId, e);
}
});

} catch (Exception e) {
log.error("更新订单聚合数据失败", e);
}
}

/**
* 更新商品聚合数据
*/
private void updateProductAggregatedData(Long productId) {
try {
// 异步更新商品聚合数据
CompletableFuture.runAsync(() -> {
try {
Date endTime = new Date();
Date startTime = new Date(endTime.getTime() - 30L * 24 * 60 * 60 * 1000); // 30天前
dataAggregationService.aggregateProductSalesStatistics(productId, startTime, endTime);
log.info("更新商品聚合数据成功: {}", productId);
} catch (Exception e) {
log.error("更新商品聚合数据失败: {}", productId, e);
}
});

} catch (Exception e) {
log.error("更新商品聚合数据失败", e);
}
}
}

三、企业级微服务数据查询方案

3.1 微服务数据查询管理服务

3.1.1 微服务数据查询管理服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/**
* 微服务数据查询管理服务
*/
@Service
public class MicroserviceDataQueryManagementService {

@Autowired
private InterServiceCallService interServiceCallService;

@Autowired
private DataAggregationService dataAggregationService;

@Autowired
private EventDrivenService eventDrivenService;

@Autowired
private RedisTemplate<String, Object> redisTemplate;

private final String QUERY_CACHE_PREFIX = "query_cache:";
private final long QUERY_CACHE_EXPIRE = 1800; // 30分钟

/**
* 执行跨库查询
*/
public CrossDatabaseQueryResult executeCrossDatabaseQuery(CrossDatabaseQueryRequest request) {
try {
CrossDatabaseQueryResult result = new CrossDatabaseQueryResult();
result.setRequestId(request.getRequestId());
result.setStartTime(new Date());

// 验证请求
validateQueryRequest(request);

// 选择查询策略
QueryStrategy strategy = selectQueryStrategy(request);
result.setStrategy(strategy);

// 执行查询
switch (strategy) {
case SERVICE_CALL:
result = executeServiceCallQuery(request);
break;
case DATA_AGGREGATION:
result = executeDataAggregationQuery(request);
break;
case EVENT_DRIVEN:
result = executeEventDrivenQuery(request);
break;
case HYBRID:
result = executeHybridQuery(request);
break;
default:
throw new IllegalArgumentException("不支持的查询策略: " + strategy);
}

result.setStatus(QueryStatus.SUCCESS);
result.setEndTime(new Date());

log.info("执行跨库查询成功: 请求ID={}, 策略={}", request.getRequestId(), strategy);
return result;

} catch (Exception e) {
log.error("执行跨库查询失败", e);
throw new CrossDatabaseQueryException("执行跨库查询失败", e);
}
}

/**
* 验证查询请求
*/
private void validateQueryRequest(CrossDatabaseQueryRequest request) {
if (request.getRequestId() == null || request.getRequestId().trim().isEmpty()) {
throw new IllegalArgumentException("请求ID不能为空");
}

if (request.getQueryType() == null) {
throw new IllegalArgumentException("查询类型不能为空");
}

if (request.getParameters() == null) {
request.setParameters(new HashMap<>());
}
}

/**
* 选择查询策略
*/
private QueryStrategy selectQueryStrategy(CrossDatabaseQueryRequest request) {
try {
// 根据查询类型选择策略
switch (request.getQueryType()) {
case USER_ORDER_INFO:
return QueryStrategy.SERVICE_CALL;
case USER_COMPLETE_INFO:
return QueryStrategy.DATA_AGGREGATION;
case ORDER_DETAIL_INFO:
return QueryStrategy.DATA_AGGREGATION;
case PRODUCT_SALES_STATISTICS:
return QueryStrategy.DATA_AGGREGATION;
case SEARCH_RESULTS:
return QueryStrategy.HYBRID;
default:
return QueryStrategy.SERVICE_CALL;
}

} catch (Exception e) {
log.error("选择查询策略失败", e);
return QueryStrategy.SERVICE_CALL; // 默认策略
}
}

/**
* 执行服务调用查询
*/
private CrossDatabaseQueryResult executeServiceCallQuery(CrossDatabaseQueryRequest request) {
try {
CrossDatabaseQueryResult result = new CrossDatabaseQueryResult();
result.setRequestId(request.getRequestId());
result.setStrategy(QueryStrategy.SERVICE_CALL);

// 根据查询类型执行不同的服务调用
switch (request.getQueryType()) {
case USER_ORDER_INFO:
Long userId = Long.valueOf(request.getParameters().get("userId").toString());
UserOrderInfo userOrderInfo = interServiceCallService.getUserOrderInfo(userId);
result.setData(userOrderInfo);
break;

case ORDER_DETAIL_INFO:
Long orderId = Long.valueOf(request.getParameters().get("orderId").toString());
OrderDetailInfo orderDetailInfo = interServiceCallService.getOrderDetailInfo(orderId);
result.setData(orderDetailInfo);
break;

default:
throw new IllegalArgumentException("不支持的服务调用查询类型: " + request.getQueryType());
}

return result;

} catch (Exception e) {
log.error("执行服务调用查询失败", e);
throw new CrossDatabaseQueryException("执行服务调用查询失败", e);
}
}

/**
* 执行数据聚合查询
*/
private CrossDatabaseQueryResult executeDataAggregationQuery(CrossDatabaseQueryRequest request) {
try {
CrossDatabaseQueryResult result = new CrossDatabaseQueryResult();
result.setRequestId(request.getRequestId());
result.setStrategy(QueryStrategy.DATA_AGGREGATION);

// 根据查询类型执行不同的数据聚合
switch (request.getQueryType()) {
case USER_COMPLETE_INFO:
Long userId = Long.valueOf(request.getParameters().get("userId").toString());
UserCompleteInfo userCompleteInfo = dataAggregationService.aggregateUserCompleteInfo(userId);
result.setData(userCompleteInfo);
break;

case ORDER_DETAIL_INFO:
Long orderId = Long.valueOf(request.getParameters().get("orderId").toString());
OrderDetailInfo orderDetailInfo = dataAggregationService.aggregateOrderDetailInfo(orderId);
result.setData(orderDetailInfo);
break;

case PRODUCT_SALES_STATISTICS:
Long productId = Long.valueOf(request.getParameters().get("productId").toString());
Date startTime = (Date) request.getParameters().get("startTime");
Date endTime = (Date) request.getParameters().get("endTime");
ProductSalesStatistics statistics = dataAggregationService.aggregateProductSalesStatistics(
productId, startTime, endTime);
result.setData(statistics);
break;

default:
throw new IllegalArgumentException("不支持的数据聚合查询类型: " + request.getQueryType());
}

return result;

} catch (Exception e) {
log.error("执行数据聚合查询失败", e);
throw new CrossDatabaseQueryException("执行数据聚合查询失败", e);
}
}

/**
* 执行事件驱动查询
*/
private CrossDatabaseQueryResult executeEventDrivenQuery(CrossDatabaseQueryRequest request) {
try {
CrossDatabaseQueryResult result = new CrossDatabaseQueryResult();
result.setRequestId(request.getRequestId());
result.setStrategy(QueryStrategy.EVENT_DRIVEN);

// 发布查询事件
CrossDatabaseQueryEvent event = new CrossDatabaseQueryEvent();
event.setEventId(UUID.randomUUID().toString());
event.setEventType("CROSS_DATABASE_QUERY");
event.setRequestId(request.getRequestId());
event.setQueryType(request.getQueryType());
event.setParameters(request.getParameters());
event.setTimestamp(new Date());

eventDrivenService.publishCrossDatabaseQueryEvent(event);

// 等待事件处理完成(实际应用中可能需要更复杂的等待机制)
Thread.sleep(1000);

result.setData("事件已发布,请稍后查询结果");

return result;

} catch (Exception e) {
log.error("执行事件驱动查询失败", e);
throw new CrossDatabaseQueryException("执行事件驱动查询失败", e);
}
}

/**
* 执行混合查询
*/
private CrossDatabaseQueryResult executeHybridQuery(CrossDatabaseQueryRequest request) {
try {
CrossDatabaseQueryResult result = new CrossDatabaseQueryResult();
result.setRequestId(request.getRequestId());
result.setStrategy(QueryStrategy.HYBRID);

// 根据查询类型执行混合查询
switch (request.getQueryType()) {
case SEARCH_RESULTS:
SearchRequest searchRequest = (SearchRequest) request.getParameters().get("searchRequest");
SearchResult searchResult = dataAggregationService.aggregateSearchResults(searchRequest);
result.setData(searchResult);
break;

default:
throw new IllegalArgumentException("不支持的混合查询类型: " + request.getQueryType());
}

return result;

} catch (Exception e) {
log.error("执行混合查询失败", e);
throw new CrossDatabaseQueryException("执行混合查询失败", e);
}
}

/**
* 异步执行跨库查询
*/
@Async
public CompletableFuture<CrossDatabaseQueryResult> executeCrossDatabaseQueryAsync(
CrossDatabaseQueryRequest request) {
try {
CrossDatabaseQueryResult result = executeCrossDatabaseQuery(request);
return CompletableFuture.completedFuture(result);
} catch (Exception e) {
return CompletableFuture.failedFuture(e);
}
}

/**
* 获取查询结果
*/
public CrossDatabaseQueryResult getQueryResult(String requestId) {
try {
// 从缓存获取
String cacheKey = QUERY_CACHE_PREFIX + requestId;
CrossDatabaseQueryResult cachedResult = (CrossDatabaseQueryResult) redisTemplate.opsForValue().get(cacheKey);

if (cachedResult != null) {
return cachedResult;
}

// 从数据库获取(实际应用中需要存储查询结果)
throw new CrossDatabaseQueryException("查询结果不存在: " + requestId);

} catch (Exception e) {
log.error("获取查询结果失败", e);
throw new CrossDatabaseQueryException("获取查询结果失败", e);
}
}

/**
* 缓存查询结果
*/
public void cacheQueryResult(String requestId, CrossDatabaseQueryResult result) {
try {
String cacheKey = QUERY_CACHE_PREFIX + requestId;
redisTemplate.opsForValue().set(cacheKey, result, Duration.ofSeconds(QUERY_CACHE_EXPIRE));

} catch (Exception e) {
log.error("缓存查询结果失败", e);
}
}

/**
* 获取查询统计信息
*/
public QueryStatistics getQueryStatistics(Date startTime, Date endTime) {
try {
QueryStatistics statistics = new QueryStatistics();
statistics.setStartTime(startTime);
statistics.setEndTime(endTime);

// 统计查询次数
statistics.setTotalQueries(1000); // 实际应用中需要从数据库统计

// 统计查询策略使用情况
Map<QueryStrategy, Long> strategyCount = new HashMap<>();
strategyCount.put(QueryStrategy.SERVICE_CALL, 500L);
strategyCount.put(QueryStrategy.DATA_AGGREGATION, 300L);
strategyCount.put(QueryStrategy.EVENT_DRIVEN, 100L);
strategyCount.put(QueryStrategy.HYBRID, 100L);
statistics.setStrategyCount(strategyCount);

// 统计查询类型使用情况
Map<QueryType, Long> typeCount = new HashMap<>();
typeCount.put(QueryType.USER_ORDER_INFO, 400L);
typeCount.put(QueryType.USER_COMPLETE_INFO, 300L);
typeCount.put(QueryType.ORDER_DETAIL_INFO, 200L);
typeCount.put(QueryType.PRODUCT_SALES_STATISTICS, 100L);
statistics.setTypeCount(typeCount);

// 统计平均响应时间
statistics.setAverageResponseTime(500.0); // 500ms

// 统计成功率
statistics.setSuccessRate(0.95); // 95%

return statistics;

} catch (Exception e) {
log.error("获取查询统计信息失败", e);
throw new CrossDatabaseQueryException("获取查询统计信息失败", e);
}
}
}

3.2 微服务数据查询优化服务

3.2.1 微服务数据查询优化服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/**
* 微服务数据查询优化服务
*/
@Service
public class MicroserviceDataQueryOptimizationService {

@Autowired
private RedisTemplate<String, Object> redisTemplate;

@Autowired
private CaffeineCache localCache;

@Autowired
private MicroserviceDataQueryManagementService queryManagementService;

private final String OPTIMIZATION_CACHE_PREFIX = "optimization_cache:";

/**
* 优化跨库查询性能
*/
public QueryOptimizationResult optimizeCrossDatabaseQueryPerformance(
CrossDatabaseQueryRequest request) {
try {
QueryOptimizationResult result = new QueryOptimizationResult();
result.setRequestId(request.getRequestId());
result.setStartTime(new Date());

// 1. 分析查询模式
QueryPatternAnalysis patternAnalysis = analyzeQueryPattern(request);
result.setPatternAnalysis(patternAnalysis);

// 2. 优化缓存策略
CacheOptimizationResult cacheOptimization = optimizeCacheStrategy(request, patternAnalysis);
result.setCacheOptimization(cacheOptimization);

// 3. 优化查询策略
QueryStrategyOptimizationResult strategyOptimization = optimizeQueryStrategy(request, patternAnalysis);
result.setStrategyOptimization(strategyOptimization);

// 4. 优化数据聚合
AggregationOptimizationResult aggregationOptimization = optimizeAggregationStrategy(request, patternAnalysis);
result.setAggregationOptimization(aggregationOptimization);

result.setStatus(OptimizationStatus.COMPLETED);
result.setEndTime(new Date());

log.info("优化跨库查询性能完成: 请求ID={}", request.getRequestId());
return result;

} catch (Exception e) {
log.error("优化跨库查询性能失败", e);
throw new CrossDatabaseQueryException("优化跨库查询性能失败", e);
}
}

/**
* 分析查询模式
*/
private QueryPatternAnalysis analyzeQueryPattern(CrossDatabaseQueryRequest request) {
try {
QueryPatternAnalysis analysis = new QueryPatternAnalysis();
analysis.setRequestId(request.getRequestId());
analysis.setQueryType(request.getQueryType());

// 分析查询频率
analysis.setQueryFrequency(analyzeQueryFrequency(request.getQueryType()));

// 分析查询复杂度
analysis.setQueryComplexity(analyzeQueryComplexity(request));

// 分析数据量
analysis.setDataVolume(analyzeDataVolume(request));

// 分析响应时间
analysis.setResponseTime(analyzeResponseTime(request.getQueryType()));

return analysis;

} catch (Exception e) {
log.error("分析查询模式失败", e);
throw new CrossDatabaseQueryException("分析查询模式失败", e);
}
}

/**
* 分析查询频率
*/
private QueryFrequency analyzeQueryFrequency(QueryType queryType) {
try {
// 从缓存获取查询频率统计
String cacheKey = OPTIMIZATION_CACHE_PREFIX + "frequency:" + queryType.name();
QueryFrequency cachedFrequency = (QueryFrequency) redisTemplate.opsForValue().get(cacheKey);

if (cachedFrequency != null) {
return cachedFrequency;
}

// 计算查询频率(实际应用中需要从数据库统计)
QueryFrequency frequency = new QueryFrequency();
frequency.setQueryType(queryType);
frequency.setDailyCount(1000);
frequency.setHourlyCount(100);
frequency.setMinuteCount(10);

// 缓存结果
redisTemplate.opsForValue().set(cacheKey, frequency, Duration.ofHours(1));

return frequency;

} catch (Exception e) {
log.error("分析查询频率失败", e);
return new QueryFrequency();
}
}

/**
* 分析查询复杂度
*/
private QueryComplexity analyzeQueryComplexity(CrossDatabaseQueryRequest request) {
try {
QueryComplexity complexity = new QueryComplexity();

// 分析参数数量
complexity.setParameterCount(request.getParameters().size());

// 分析查询类型复杂度
switch (request.getQueryType()) {
case USER_ORDER_INFO:
complexity.setComplexityLevel(ComplexityLevel.MEDIUM);
complexity.setServiceCount(3);
break;
case USER_COMPLETE_INFO:
complexity.setComplexityLevel(ComplexityLevel.HIGH);
complexity.setServiceCount(4);
break;
case ORDER_DETAIL_INFO:
complexity.setComplexityLevel(ComplexityLevel.MEDIUM);
complexity.setServiceCount(3);
break;
case PRODUCT_SALES_STATISTICS:
complexity.setComplexityLevel(ComplexityLevel.HIGH);
complexity.setServiceCount(3);
break;
case SEARCH_RESULTS:
complexity.setComplexityLevel(ComplexityLevel.LOW);
complexity.setServiceCount(1);
break;
default:
complexity.setComplexityLevel(ComplexityLevel.MEDIUM);
complexity.setServiceCount(2);
break;
}

return complexity;

} catch (Exception e) {
log.error("分析查询复杂度失败", e);
return new QueryComplexity();
}
}

/**
* 分析数据量
*/
private DataVolume analyzeDataVolume(CrossDatabaseQueryRequest request) {
try {
DataVolume volume = new DataVolume();

// 根据查询类型估算数据量
switch (request.getQueryType()) {
case USER_ORDER_INFO:
volume.setEstimatedRecords(100);
volume.setDataSizeKB(50);
break;
case USER_COMPLETE_INFO:
volume.setEstimatedRecords(500);
volume.setDataSizeKB(200);
break;
case ORDER_DETAIL_INFO:
volume.setEstimatedRecords(200);
volume.setDataSizeKB(100);
break;
case PRODUCT_SALES_STATISTICS:
volume.setEstimatedRecords(1000);
volume.setDataSizeKB(500);
break;
case SEARCH_RESULTS:
volume.setEstimatedRecords(50);
volume.setDataSizeKB(20);
break;
default:
volume.setEstimatedRecords(100);
volume.setDataSizeKB(50);
break;
}

return volume;

} catch (Exception e) {
log.error("分析数据量失败", e);
return new DataVolume();
}
}

/**
* 分析响应时间
*/
private ResponseTime analyzeResponseTime(QueryType queryType) {
try {
ResponseTime responseTime = new ResponseTime();

// 根据查询类型估算响应时间
switch (queryType) {
case USER_ORDER_INFO:
responseTime.setAverageTime(500);
responseTime.setP95Time(800);
responseTime.setP99Time(1200);
break;
case USER_COMPLETE_INFO:
responseTime.setAverageTime(800);
responseTime.setP95Time(1200);
responseTime.setP99Time(2000);
break;
case ORDER_DETAIL_INFO:
responseTime.setAverageTime(600);
responseTime.setP95Time(900);
responseTime.setP99Time(1500);
break;
case PRODUCT_SALES_STATISTICS:
responseTime.setAverageTime(1000);
responseTime.setP95Time(1500);
responseTime.setP99Time(2500);
break;
case SEARCH_RESULTS:
responseTime.setAverageTime(200);
responseTime.setP95Time(300);
responseTime.setP99Time(500);
break;
default:
responseTime.setAverageTime(500);
responseTime.setP95Time(800);
responseTime.setP99Time(1200);
break;
}

return responseTime;

} catch (Exception e) {
log.error("分析响应时间失败", e);
return new ResponseTime();
}
}

/**
* 优化缓存策略
*/
private CacheOptimizationResult optimizeCacheStrategy(CrossDatabaseQueryRequest request,
QueryPatternAnalysis analysis) {
try {
CacheOptimizationResult result = new CacheOptimizationResult();
result.setRequestId(request.getRequestId());

// 根据查询模式优化缓存策略
if (analysis.getQueryFrequency().getDailyCount() > 1000) {
result.setRecommendedCacheExpire(3600); // 1小时
result.setRecommendedCacheSize(1000);
result.setRecommendedCacheStrategy("LRU");
} else if (analysis.getQueryFrequency().getDailyCount() > 100) {
result.setRecommendedCacheExpire(1800); // 30分钟
result.setRecommendedCacheSize(500);
result.setRecommendedCacheStrategy("LFU");
} else {
result.setRecommendedCacheExpire(600); // 10分钟
result.setRecommendedCacheSize(100);
result.setRecommendedCacheStrategy("FIFO");
}

// 根据数据量优化缓存策略
if (analysis.getDataVolume().getDataSizeKB() > 100) {
result.setRecommendedCompression(true);
result.setRecommendedCompressionLevel(6);
} else {
result.setRecommendedCompression(false);
}

return result;

} catch (Exception e) {
log.error("优化缓存策略失败", e);
throw new CrossDatabaseQueryException("优化缓存策略失败", e);
}
}

/**
* 优化查询策略
*/
private QueryStrategyOptimizationResult optimizeQueryStrategy(CrossDatabaseQueryRequest request,
QueryPatternAnalysis analysis) {
try {
QueryStrategyOptimizationResult result = new QueryStrategyOptimizationResult();
result.setRequestId(request.getRequestId());

// 根据查询复杂度优化策略
if (analysis.getQueryComplexity().getComplexityLevel() == ComplexityLevel.HIGH) {
result.setRecommendedStrategy(QueryStrategy.DATA_AGGREGATION);
result.setRecommendedParallelism(4);
result.setRecommendedTimeout(5000);
} else if (analysis.getQueryComplexity().getComplexityLevel() == ComplexityLevel.MEDIUM) {
result.setRecommendedStrategy(QueryStrategy.SERVICE_CALL);
result.setRecommendedParallelism(2);
result.setRecommendedTimeout(3000);
} else {
result.setRecommendedStrategy(QueryStrategy.SERVICE_CALL);
result.setRecommendedParallelism(1);
result.setRecommendedTimeout(1000);
}

// 根据响应时间优化策略
if (analysis.getResponseTime().getP95Time() > 1000) {
result.setRecommendedAsync(true);
result.setRecommendedBatchSize(10);
} else {
result.setRecommendedAsync(false);
result.setRecommendedBatchSize(50);
}

return result;

} catch (Exception e) {
log.error("优化查询策略失败", e);
throw new CrossDatabaseQueryException("优化查询策略失败", e);
}
}

/**
* 优化聚合策略
*/
private AggregationOptimizationResult optimizeAggregationStrategy(CrossDatabaseQueryRequest request,
QueryPatternAnalysis analysis) {
try {
AggregationOptimizationResult result = new AggregationOptimizationResult();
result.setRequestId(request.getRequestId());

// 根据数据量优化聚合策略
if (analysis.getDataVolume().getEstimatedRecords() > 1000) {
result.setRecommendedAggregationType(AggregationType.BATCH);
result.setRecommendedBatchSize(100);
result.setRecommendedParallelism(4);
} else if (analysis.getDataVolume().getEstimatedRecords() > 100) {
result.setRecommendedAggregationType(AggregationType.STREAM);
result.setRecommendedBatchSize(50);
result.setRecommendedParallelism(2);
} else {
result.setRecommendedAggregationType(AggregationType.MEMORY);
result.setRecommendedBatchSize(20);
result.setRecommendedParallelism(1);
}

// 根据查询频率优化聚合策略
if (analysis.getQueryFrequency().getDailyCount() > 1000) {
result.setRecommendedPreAggregation(true);
result.setRecommendedPreAggregationInterval(300); // 5分钟
} else {
result.setRecommendedPreAggregation(false);
}

return result;

} catch (Exception e) {
log.error("优化聚合策略失败", e);
throw new CrossDatabaseQueryException("优化聚合策略失败", e);
}
}

/**
* 预热查询缓存
*/
@PostConstruct
public void warmupQueryCache() {
try {
// 预热常用查询
List<QueryType> commonQueryTypes = Arrays.asList(
QueryType.USER_ORDER_INFO,
QueryType.ORDER_DETAIL_INFO,
QueryType.SEARCH_RESULTS);

for (QueryType queryType : commonQueryTypes) {
try {
String cacheKey = OPTIMIZATION_CACHE_PREFIX + "warmup:" + queryType.name();
Object warmupData = new Object();
redisTemplate.opsForValue().set(cacheKey, warmupData, Duration.ofHours(1));
} catch (Exception e) {
log.error("预热查询缓存失败: {}", queryType, e);
}
}

} catch (Exception e) {
log.error("预热查询缓存失败", e);
}
}

/**
* 清理过期缓存
*/
@Scheduled(fixedRate = 300000) // 5分钟
public void cleanupExpiredCache() {
try {
// 清理本地缓存
localCache.cleanUp();

// 清理Redis过期缓存
cleanupRedisExpiredCache();

} catch (Exception e) {
log.error("清理过期缓存失败", e);
}
}

/**
* 清理Redis过期缓存
*/
private void cleanupRedisExpiredCache() {
try {
Set<String> cacheKeys = redisTemplate.keys(OPTIMIZATION_CACHE_PREFIX + "*");

for (String key : cacheKeys) {
Long ttl = redisTemplate.getExpire(key);
if (ttl != null && ttl <= 0) {
redisTemplate.delete(key);
}
}

} catch (Exception e) {
log.error("清理Redis过期缓存失败", e);
}
}
}

四、性能优化与监控

4.1 性能优化

4.1.1 跨库查询性能优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/**
* 跨库查询性能优化服务
*/
@Service
public class CrossDatabaseQueryPerformanceOptimizationService {

@Autowired
private RedisTemplate<String, Object> redisTemplate;

@Autowired
private CaffeineCache localCache;

private final String PERFORMANCE_CACHE_PREFIX = "performance_cache:";

/**
* 缓存查询性能数据
*/
public void cacheQueryPerformanceData(String requestId, Object data) {
String cacheKey = PERFORMANCE_CACHE_PREFIX + requestId;

try {
// 写入本地缓存
localCache.put(cacheKey, data);

// 写入Redis缓存
String redisCacheKey = "redis_cache:" + cacheKey;
redisTemplate.opsForValue().set(redisCacheKey, data, Duration.ofHours(1));

} catch (Exception e) {
log.error("缓存查询性能数据失败", e);
}
}

/**
* 获取缓存的查询性能数据
*/
public Object getCachedQueryPerformanceData(String requestId) {
String cacheKey = PERFORMANCE_CACHE_PREFIX + requestId;

try {
// 从本地缓存获取
Object cachedData = localCache.getIfPresent(cacheKey);
if (cachedData != null) {
return cachedData;
}

// 从Redis获取
String redisCacheKey = "redis_cache:" + cacheKey;
Object redisData = redisTemplate.opsForValue().get(redisCacheKey);
if (redisData != null) {
localCache.put(cacheKey, redisData);
return redisData;
}

} catch (Exception e) {
log.error("获取缓存的查询性能数据失败", e);
}

return null;
}

/**
* 批量处理查询请求
*/
public List<CrossDatabaseQueryResult> batchProcessQueryRequests(
List<CrossDatabaseQueryRequest> requests) {
List<CrossDatabaseQueryResult> results = new ArrayList<>();

try {
// 按查询类型分组
Map<QueryType, List<CrossDatabaseQueryRequest>> typeGroups = requests.stream()
.collect(Collectors.groupingBy(CrossDatabaseQueryRequest::getQueryType));

// 并行处理各类型
typeGroups.entrySet().parallelStream().forEach(entry -> {
QueryType queryType = entry.getKey();
List<CrossDatabaseQueryRequest> typeRequests = entry.getValue();

try {
List<CrossDatabaseQueryResult> typeResults = processTypeRequests(queryType, typeRequests);

synchronized (results) {
results.addAll(typeResults);
}

} catch (Exception e) {
log.error("处理查询类型失败: {}", queryType, e);
}
});

} catch (Exception e) {
log.error("批量处理查询请求失败", e);
}

return results;
}

/**
* 处理类型请求
*/
private List<CrossDatabaseQueryResult> processTypeRequests(QueryType queryType,
List<CrossDatabaseQueryRequest> requests) {
List<CrossDatabaseQueryResult> results = new ArrayList<>();

for (CrossDatabaseQueryRequest request : requests) {
try {
CrossDatabaseQueryResult result = processQueryRequest(request);
results.add(result);
} catch (Exception e) {
log.error("处理查询请求失败: {}", request.getRequestId(), e);
CrossDatabaseQueryResult errorResult = new CrossDatabaseQueryResult();
errorResult.setRequestId(request.getRequestId());
errorResult.setStatus(QueryStatus.FAILED);
errorResult.setErrorMessage(e.getMessage());
results.add(errorResult);
}
}

return results;
}

/**
* 处理查询请求
*/
private CrossDatabaseQueryResult processQueryRequest(CrossDatabaseQueryRequest request) {
// 实现查询处理逻辑
CrossDatabaseQueryResult result = new CrossDatabaseQueryResult();
result.setRequestId(request.getRequestId());
result.setStatus(QueryStatus.SUCCESS);
result.setData("查询成功");
return result;
}

/**
* 预热查询性能缓存
*/
@PostConstruct
public void warmupQueryPerformanceCache() {
try {
// 预热常用查询性能数据
List<String> commonRequestIds = Arrays.asList("req_1", "req_2", "req_3");

for (String requestId : commonRequestIds) {
try {
String cacheKey = PERFORMANCE_CACHE_PREFIX + requestId;
Object performanceData = new Object();
cacheQueryPerformanceData(requestId, performanceData);
} catch (Exception e) {
log.error("预热查询性能缓存失败: {}", requestId, e);
}
}

} catch (Exception e) {
log.error("预热查询性能缓存失败", e);
}
}

/**
* 清理过期缓存
*/
@Scheduled(fixedRate = 300000) // 5分钟
public void cleanupExpiredCache() {
try {
// 清理本地缓存
localCache.cleanUp();

// 清理Redis过期缓存
cleanupRedisExpiredCache();

} catch (Exception e) {
log.error("清理过期缓存失败", e);
}
}

/**
* 清理Redis过期缓存
*/
private void cleanupRedisExpiredCache() {
try {
Set<String> cacheKeys = redisTemplate.keys("redis_cache:" + PERFORMANCE_CACHE_PREFIX + "*");

for (String key : cacheKeys) {
Long ttl = redisTemplate.getExpire(key);
if (ttl != null && ttl <= 0) {
redisTemplate.delete(key);
}
}

} catch (Exception e) {
log.error("清理Redis过期缓存失败", e);
}
}
}

4.2 监控告警

4.2.1 监控指标

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/**
* 跨库查询监控指标
*/
@Component
public class CrossDatabaseQueryMetrics {

private final MeterRegistry meterRegistry;

public CrossDatabaseQueryMetrics(MeterRegistry meterRegistry) {
this.meterRegistry = meterRegistry;
}

/**
* 记录跨库查询次数
*/
public void recordCrossDatabaseQueryCount(String queryType, String strategy) {
Counter.builder("cross_db_query.count")
.description("跨库查询次数")
.tag("query_type", queryType)
.tag("strategy", strategy)
.register(meterRegistry)
.increment();
}

/**
* 记录跨库查询时间
*/
public void recordCrossDatabaseQueryTime(String queryType, String strategy, long duration) {
Timer.builder("cross_db_query.time")
.description("跨库查询时间")
.tag("query_type", queryType)
.tag("strategy", strategy)
.register(meterRegistry)
.record(duration, TimeUnit.MILLISECONDS);
}

/**
* 记录跨库查询数据量
*/
public void recordCrossDatabaseQueryDataCount(String queryType, long count) {
Counter.builder("cross_db_query.data.count")
.description("跨库查询数据量")
.tag("query_type", queryType)
.register(meterRegistry)
.increment(count);
}

/**
* 记录跨库查询成功率
*/
public void recordCrossDatabaseQuerySuccessRate(String queryType, double successRate) {
Gauge.builder("cross_db_query.success.rate")
.description("跨库查询成功率")
.tag("query_type", queryType)
.register(meterRegistry, successRate);
}

/**
* 记录跨库查询失败率
*/
public void recordCrossDatabaseQueryFailureRate(String queryType, double failureRate) {
Gauge.builder("cross_db_query.failure.rate")
.description("跨库查询失败率")
.tag("query_type", queryType)
.register(meterRegistry, failureRate);
}

/**
* 记录跨库查询吞吐量
*/
public void recordCrossDatabaseQueryThroughput(String queryType, double throughput) {
Gauge.builder("cross_db_query.throughput")
.description("跨库查询吞吐量")
.tag("query_type", queryType)
.register(meterRegistry, throughput);
}

/**
* 记录跨库查询异常次数
*/
public void recordCrossDatabaseQueryExceptionCount(String queryType, String exceptionType) {
Counter.builder("cross_db_query.exception.count")
.description("跨库查询异常次数")
.tag("query_type", queryType)
.tag("exception_type", exceptionType)
.register(meterRegistry)
.increment();
}
}

4.2.2 告警规则

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# prometheus-rules.yml
groups:
- name: cross_db_query_alerts
rules:
- alert: HighCrossDatabaseQueryTime
expr: cross_db_query_time{quantile="0.95"} > 5000
for: 2m
labels:
severity: warning
annotations:
summary: "跨库查询时间过长"
description: "跨库查询时间P95超过5秒,当前值: {{ $value }}ms"

- alert: HighCrossDatabaseQueryFailureRate
expr: cross_db_query_failure_rate > 0.1
for: 2m
labels:
severity: warning
annotations:
summary: "跨库查询失败率过高"
description: "跨库查询失败率超过10%,当前值: {{ $value }}"

- alert: LowCrossDatabaseQueryThroughput
expr: cross_db_query_throughput < 10
for: 5m
labels:
severity: warning
annotations:
summary: "跨库查询吞吐量过低"
description: "跨库查询吞吐量低于10次/秒,当前值: {{ $value }}"

- alert: HighCrossDatabaseQueryExceptionCount
expr: rate(cross_db_query_exception_count[5m]) > 5
for: 2m
labels:
severity: critical
annotations:
summary: "跨库查询异常次数过多"
description: "跨库查询异常频率超过5次/分钟,当前值: {{ $value }}"

- alert: CrossDatabaseQueryServiceDown
expr: up{job="cross-db-query-service"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "跨库查询服务宕机"
description: "跨库查询服务已宕机超过1分钟"

五、总结

微服务跨库查询作为分布式系统中的重要挑战,通过合理的跨库查询策略和数据聚合方案,能够在不破坏微服务边界的前提下实现复杂的数据查询需求。本文从跨库查询策略到数据聚合方案,从基础实现到企业级应用,系统梳理了微服务跨库查询的完整解决方案。

5.1 关键要点

  1. 服务间调用:通过REST API或Feign客户端实现服务间数据查询
  2. 数据聚合:将多个服务的数据聚合为完整的业务对象
  3. 事件驱动:通过事件机制实现数据的异步更新和同步
  4. 性能优化:通过缓存、并行查询等手段优化查询性能
  5. 监控告警:建立完善的监控体系,及时发现和处理问题

5.2 最佳实践

  1. 策略选择:根据查询复杂度、数据量、响应时间要求选择合适的查询策略
  2. 缓存优化:合理使用缓存,提高查询性能和减少服务间调用
  3. 并行处理:使用并行查询提高查询效率
  4. 事件驱动:通过事件机制保持数据一致性
  5. 监控告警:建立完善的监控体系,确保查询服务稳定运行

通过以上措施,可以构建一个高效、稳定、可扩展的微服务跨库查询系统,为企业的各种业务场景提供数据查询支持。