1. 边缘计算车载设备本地预处理概述

边缘计算车载设备本地预处理是智能交通和车联网的核心技术,通过在车载设备上进行本地数据处理和预处理,减少网络传输延迟,提高系统响应速度,降低云端计算压力。系统具备车载设备管理、本地预处理、实时数据处理、性能优化、监控告警等功能。本文将详细介绍边缘计算车载设备本地预处理的原理、实现方法、性能优化技巧以及在运维实战中的应用。

1.1 边缘计算车载设备本地预处理核心价值

  1. 低延迟处理: 毫秒级本地数据处理响应
  2. 减少网络传输: 降低数据传输量和网络带宽占用
  3. 提高可靠性: 本地处理减少网络依赖
  4. 实时性: 支持实时数据处理和决策
  5. 成本优化: 减少云端计算和存储成本

1.2 边缘计算车载设备本地预处理场景

  • 车辆状态监控: 实时监控车辆运行状态
  • 驾驶行为分析: 分析驾驶行为和习惯
  • 路况感知: 感知和预测路况信息
  • 安全预警: 实时安全预警和提醒
  • 数据压缩: 压缩和优化数据传输

1.3 边缘计算技术特性

  • 本地计算: 在车载设备上进行本地计算
  • 数据预处理: 对原始数据进行预处理和清洗
  • 实时处理: 支持实时数据处理和决策
  • 离线能力: 支持离线数据处理
  • 资源优化: 优化计算和存储资源使用

2. 边缘计算车载设备本地预处理基础实现

2.1 边缘计算车载设备本地预处理配置类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* 边缘计算车载设备本地预处理配置类
* @author 运维实战
*/
@Configuration
@EnableConfigurationProperties(EdgeComputingProperties.class)
public class EdgeComputingConfig {

@Autowired
private EdgeComputingProperties properties;

/**
* 边缘计算车载设备本地预处理服务
* @return 边缘计算车载设备本地预处理服务
*/
@Bean
public EdgeComputingService edgeComputingService() {
return new EdgeComputingService();
}

/**
* 车载设备管理服务
* @return 车载设备管理服务
*/
@Bean
public VehicleDeviceService vehicleDeviceService() {
return new VehicleDeviceService();
}

/**
* 本地预处理服务
* @return 本地预处理服务
*/
@Bean
public LocalPreprocessingService localPreprocessingService() {
return new LocalPreprocessingService();
}

/**
* 实时数据处理服务
* @return 实时数据处理服务
*/
@Bean
public RealTimeDataProcessingService realTimeDataProcessingService() {
return new RealTimeDataProcessingService();
}

/**
* 边缘计算监控服务
* @return 边缘计算监控服务
*/
@Bean
public EdgeComputingMonitorService edgeComputingMonitorService() {
return new EdgeComputingMonitorService();
}

private static final Logger logger = LoggerFactory.getLogger(EdgeComputingConfig.class);
}

2.2 边缘计算车载设备本地预处理属性配置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/**
* 边缘计算车载设备本地预处理属性配置
* @author 运维实战
*/
@Data
@ConfigurationProperties(prefix = "edge.computing")
public class EdgeComputingProperties {

/**
* 是否启用边缘计算
*/
private boolean enableEdgeComputing = true;

/**
* 车载设备ID
*/
private String vehicleDeviceId;

/**
* 车载设备类型
*/
private String vehicleDeviceType = "OBD";

/**
* 本地预处理模式
*/
private String localPreprocessingMode = "REAL_TIME";

/**
* 数据处理批次大小
*/
private int dataProcessingBatchSize = 100;

/**
* 数据处理间隔(毫秒)
*/
private long dataProcessingInterval = 1000;

/**
* 数据缓存大小
*/
private int dataCacheSize = 1000;

/**
* 数据缓存过期时间(毫秒)
*/
private long dataCacheExpireTime = 300000;

/**
* 是否启用数据压缩
*/
private boolean enableDataCompression = true;

/**
* 数据压缩算法
*/
private String dataCompressionAlgorithm = "GZIP";

/**
* 压缩级别
*/
private int compressionLevel = 6;

/**
* 是否启用数据过滤
*/
private boolean enableDataFiltering = true;

/**
* 数据过滤规则
*/
private List<String> dataFilteringRules = Arrays.asList("speed > 0", "engine_rpm > 0");

/**
* 是否启用异常检测
*/
private boolean enableAnomalyDetection = true;

/**
* 异常检测阈值
*/
private double anomalyDetectionThreshold = 3.0;

/**
* 是否启用实时预警
*/
private boolean enableRealTimeAlert = true;

/**
* 预警规则
*/
private List<String> alertRules = Arrays.asList("speed > 120", "engine_temp > 100");

/**
* 是否启用离线处理
*/
private boolean enableOfflineProcessing = true;

/**
* 离线数据存储路径
*/
private String offlineDataStoragePath = "/tmp/edge_computing";

/**
* 离线数据保留天数
*/
private int offlineDataRetentionDays = 7;

/**
* 是否启用性能监控
*/
private boolean enablePerformanceMonitoring = true;

/**
* 性能监控间隔(毫秒)
*/
private long performanceMonitoringInterval = 30000;

/**
* 是否启用资源优化
*/
private boolean enableResourceOptimization = true;

/**
* CPU使用率阈值
*/
private double cpuUsageThreshold = 80.0;

/**
* 内存使用率阈值
*/
private double memoryUsageThreshold = 80.0;

/**
* 磁盘使用率阈值
*/
private double diskUsageThreshold = 90.0;

/**
* 是否启用网络优化
*/
private boolean enableNetworkOptimization = true;

/**
* 网络传输优化模式
*/
private String networkOptimizationMode = "BATCH";

/**
* 批量传输大小
*/
private int batchTransmissionSize = 50;

/**
* 传输间隔(毫秒)
*/
private long transmissionInterval = 5000;

/**
* 是否启用监控
*/
private boolean enableMonitoring = true;

/**
* 监控间隔(毫秒)
*/
private long monitorInterval = 30000;

/**
* 是否启用告警
*/
private boolean enableAlert = true;

/**
* 处理性能告警阈值(毫秒)
*/
private long processingPerformanceAlertThreshold = 1000;

/**
* 资源使用告警阈值
*/
private double resourceUsageAlertThreshold = 85.0;

/**
* 网络延迟告警阈值(毫秒)
*/
private long networkLatencyAlertThreshold = 1000;
}

2.3 车载设备数据模型类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/**
* 车载设备数据模型类
* @author 运维实战
*/
@Data
public class VehicleDeviceData {

/**
* 数据ID
*/
private String dataId;

/**
* 车载设备ID
*/
private String vehicleDeviceId;

/**
* 车载设备类型
*/
private String vehicleDeviceType;

/**
* 车辆ID
*/
private String vehicleId;

/**
* 时间戳
*/
private Long timestamp;

/**
* 车速(km/h)
*/
private Double speed;

/**
* 发动机转速(rpm)
*/
private Integer engineRpm;

/**
* 发动机温度(℃)
*/
private Double engineTemperature;

/**
* 燃油消耗率(L/100km)
*/
private Double fuelConsumption;

/**
* 电池电压(V)
*/
private Double batteryVoltage;

/**
* 轮胎压力(kPa)
*/
private Map<String, Double> tirePressure;

/**
* 地理位置
*/
private GeoLocation location;

/**
* 驾驶行为数据
*/
private DrivingBehaviorData drivingBehavior;

/**
* 车辆状态
*/
private VehicleStatus vehicleStatus;

/**
* 原始数据
*/
private Map<String, Object> rawData;

/**
* 扩展属性
*/
private Map<String, Object> extendedProperties;

public VehicleDeviceData() {
this.dataId = UUID.randomUUID().toString();
this.timestamp = System.currentTimeMillis();
this.rawData = new HashMap<>();
this.extendedProperties = new HashMap<>();
}

public VehicleDeviceData(String vehicleDeviceId, String vehicleId) {
this();
this.vehicleDeviceId = vehicleDeviceId;
this.vehicleId = vehicleId;
}

/**
* 验证车载设备数据
* @return 是否有效
*/
public boolean validate() {
if (vehicleDeviceId == null || vehicleDeviceId.isEmpty()) {
return false;
}

if (vehicleId == null || vehicleId.isEmpty()) {
return false;
}

if (timestamp == null || timestamp <= 0) {
return false;
}

if (speed != null && (speed < 0 || speed > 300)) {
return false;
}

if (engineRpm != null && (engineRpm < 0 || engineRpm > 10000)) {
return false;
}

if (engineTemperature != null && (engineTemperature < -40 || engineTemperature > 150)) {
return false;
}

return true;
}

/**
* 计算数据质量分数
* @return 数据质量分数
*/
public int calculateDataQuality() {
int quality = 100;

// 根据车速合理性调整质量
if (speed != null) {
if (speed > 150) {
quality -= 20;
} else if (speed > 120) {
quality -= 10;
}
}

// 根据发动机转速合理性调整质量
if (engineRpm != null) {
if (engineRpm > 8000) {
quality -= 15;
} else if (engineRpm > 6000) {
quality -= 5;
}
}

// 根据发动机温度合理性调整质量
if (engineTemperature != null) {
if (engineTemperature > 120) {
quality -= 25;
} else if (engineTemperature > 100) {
quality -= 10;
}
}

return Math.max(0, quality);
}

/**
* 添加原始数据
* @param key 键
* @param value 值
*/
public void addRawData(String key, Object value) {
if (rawData == null) {
rawData = new HashMap<>();
}
rawData.put(key, value);
}

/**
* 添加扩展属性
* @param key 键
* @param value 值
*/
public void addExtendedProperty(String key, Object value) {
if (extendedProperties == null) {
extendedProperties = new HashMap<>();
}
extendedProperties.put(key, value);
}

/**
* 获取扩展属性
* @param key 键
* @return
*/
public Object getExtendedProperty(String key) {
return extendedProperties != null ? extendedProperties.get(key) : null;
}
}

/**
* 地理位置信息类
* @author 运维实战
*/
@Data
public class GeoLocation {

private Double longitude;
private Double latitude;
private Double altitude;
private Double accuracy;

public GeoLocation() {}

public GeoLocation(Double longitude, Double latitude) {
this.longitude = longitude;
this.latitude = latitude;
}

public GeoLocation(Double longitude, Double latitude, Double altitude) {
this.longitude = longitude;
this.latitude = latitude;
this.altitude = altitude;
}

/**
* 验证地理位置
* @return 是否有效
*/
public boolean validate() {
if (longitude == null || latitude == null) {
return false;
}

if (longitude < -180 || longitude > 180) {
return false;
}

if (latitude < -90 || latitude > 90) {
return false;
}

return true;
}
}

/**
* 驾驶行为数据类
* @author 运维实战
*/
@Data
public class DrivingBehaviorData {

/**
* 急加速次数
*/
private Integer rapidAccelerationCount;

/**
* 急刹车次数
*/
private Integer rapidBrakingCount;

/**
* 急转弯次数
*/
private Integer rapidTurningCount;

/**
* 超速次数
*/
private Integer speedingCount;

/**
* 疲劳驾驶时间(分钟)
*/
private Integer fatigueDrivingTime;

/**
* 驾驶评分
*/
private Double drivingScore;

/**
* 驾驶风险等级
*/
private String riskLevel;

public DrivingBehaviorData() {
this.rapidAccelerationCount = 0;
this.rapidBrakingCount = 0;
this.rapidTurningCount = 0;
this.speedingCount = 0;
this.fatigueDrivingTime = 0;
this.drivingScore = 100.0;
this.riskLevel = "LOW";
}

/**
* 计算驾驶评分
* @return 驾驶评分
*/
public double calculateDrivingScore() {
double score = 100.0;

// 根据急加速次数扣分
if (rapidAccelerationCount != null) {
score -= rapidAccelerationCount * 2;
}

// 根据急刹车次数扣分
if (rapidBrakingCount != null) {
score -= rapidBrakingCount * 3;
}

// 根据急转弯次数扣分
if (rapidTurningCount != null) {
score -= rapidTurningCount * 2;
}

// 根据超速次数扣分
if (speedingCount != null) {
score -= speedingCount * 5;
}

// 根据疲劳驾驶时间扣分
if (fatigueDrivingTime != null) {
score -= fatigueDrivingTime * 0.5;
}

return Math.max(0, score);
}

/**
* 计算风险等级
* @return 风险等级
*/
public String calculateRiskLevel() {
double score = calculateDrivingScore();

if (score >= 90) {
return "LOW";
} else if (score >= 70) {
return "MEDIUM";
} else if (score >= 50) {
return "HIGH";
} else {
return "CRITICAL";
}
}
}

/**
* 车辆状态类
* @author 运维实战
*/
@Data
public class VehicleStatus {

/**
* 发动机状态
*/
private String engineStatus;

/**
* 变速箱状态
*/
private String transmissionStatus;

/**
* 制动系统状态
*/
private String brakeSystemStatus;

/**
* 转向系统状态
*/
private String steeringSystemStatus;

/**
* 轮胎状态
*/
private String tireStatus;

/**
* 电池状态
*/
private String batteryStatus;

/**
* 燃油系统状态
*/
private String fuelSystemStatus;

/**
* 整体健康状态
*/
private String overallHealthStatus;

/**
* 故障码列表
*/
private List<String> faultCodes;

/**
* 维护提醒
*/
private List<String> maintenanceReminders;

public VehicleStatus() {
this.engineStatus = "NORMAL";
this.transmissionStatus = "NORMAL";
this.brakeSystemStatus = "NORMAL";
this.steeringSystemStatus = "NORMAL";
this.tireStatus = "NORMAL";
this.batteryStatus = "NORMAL";
this.fuelSystemStatus = "NORMAL";
this.overallHealthStatus = "HEALTHY";
this.faultCodes = new ArrayList<>();
this.maintenanceReminders = new ArrayList<>();
}

/**
* 计算整体健康状态
* @return 整体健康状态
*/
public String calculateOverallHealthStatus() {
int normalCount = 0;
int totalCount = 7;

if ("NORMAL".equals(engineStatus)) normalCount++;
if ("NORMAL".equals(transmissionStatus)) normalCount++;
if ("NORMAL".equals(brakeSystemStatus)) normalCount++;
if ("NORMAL".equals(steeringSystemStatus)) normalCount++;
if ("NORMAL".equals(tireStatus)) normalCount++;
if ("NORMAL".equals(batteryStatus)) normalCount++;
if ("NORMAL".equals(fuelSystemStatus)) normalCount++;

double healthRatio = (double) normalCount / totalCount;

if (healthRatio >= 0.9) {
return "HEALTHY";
} else if (healthRatio >= 0.7) {
return "GOOD";
} else if (healthRatio >= 0.5) {
return "FAIR";
} else if (healthRatio >= 0.3) {
return "POOR";
} else {
return "CRITICAL";
}
}
}

2.4 基础边缘计算车载设备本地预处理服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/**
* 基础边缘计算车载设备本地预处理服务
* @author 运维实战
*/
@Service
public class EdgeComputingService {

@Autowired
private EdgeComputingProperties properties;

@Autowired
private VehicleDeviceService vehicleDeviceService;

@Autowired
private LocalPreprocessingService localPreprocessingService;

@Autowired
private RealTimeDataProcessingService realTimeDataProcessingService;

@Autowired
private EdgeComputingMonitorService edgeComputingMonitorService;

private static final Logger logger = LoggerFactory.getLogger(EdgeComputingService.class);

/**
* 处理车载设备数据
* @param vehicleDeviceData 车载设备数据
* @return 处理结果
*/
public EdgeComputingResult processVehicleDeviceData(VehicleDeviceData vehicleDeviceData) {
logger.info("处理车载设备数据,设备ID: {}, 车辆ID: {}",
vehicleDeviceData.getVehicleDeviceId(), vehicleDeviceData.getVehicleId());

EdgeComputingResult result = new EdgeComputingResult();
result.setVehicleDeviceId(vehicleDeviceData.getVehicleDeviceId());
result.setVehicleId(vehicleDeviceData.getVehicleId());
result.setStartTime(System.currentTimeMillis());

try {
// 验证车载设备数据
if (!vehicleDeviceData.validate()) {
result.setSuccess(false);
result.setError("车载设备数据验证失败");
result.setEndTime(System.currentTimeMillis());
return result;
}

// 本地预处理
LocalPreprocessingResult preprocessingResult = localPreprocessingService.preprocessData(vehicleDeviceData);

if (!preprocessingResult.isSuccess()) {
result.setSuccess(false);
result.setError("本地预处理失败: " + preprocessingResult.getError());
result.setEndTime(System.currentTimeMillis());
return result;
}

// 实时数据处理
RealTimeDataProcessingResult processingResult = realTimeDataProcessingService.processData(preprocessingResult.getProcessedData());

if (!processingResult.isSuccess()) {
result.setSuccess(false);
result.setError("实时数据处理失败: " + processingResult.getError());
result.setEndTime(System.currentTimeMillis());
return result;
}

// 更新车载设备状态
vehicleDeviceService.updateDeviceStatus(vehicleDeviceData.getVehicleDeviceId(), processingResult.getDeviceStatus());

result.setSuccess(true);
result.setProcessedData(processingResult.getProcessedData());
result.setDeviceStatus(processingResult.getDeviceStatus());
result.setEndTime(System.currentTimeMillis());

// 记录处理指标
edgeComputingMonitorService.recordDataProcessing(vehicleDeviceData.getVehicleDeviceId(), true);

logger.info("车载设备数据处理完成,设备ID: {}, 成功: {}, 耗时: {}ms",
vehicleDeviceData.getVehicleDeviceId(), result.isSuccess(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("车载设备数据处理异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
result.setSuccess(false);
result.setError("车载设备数据处理异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());

// 记录处理失败指标
edgeComputingMonitorService.recordDataProcessing(vehicleDeviceData.getVehicleDeviceId(), false);

return result;
}
}

/**
* 批量处理车载设备数据
* @param vehicleDeviceDataList 车载设备数据列表
* @return 批量处理结果
*/
public EdgeComputingBatchResult batchProcessVehicleDeviceData(List<VehicleDeviceData> vehicleDeviceDataList) {
logger.info("批量处理车载设备数据,数量: {}", vehicleDeviceDataList.size());

EdgeComputingBatchResult result = new EdgeComputingBatchResult();
result.setTotalCount(vehicleDeviceDataList.size());
result.setStartTime(System.currentTimeMillis());

try {
// 验证和预处理数据
List<VehicleDeviceData> validDataList = new ArrayList<>();
List<VehicleDeviceData> invalidDataList = new ArrayList<>();

for (VehicleDeviceData vehicleDeviceData : vehicleDeviceDataList) {
if (vehicleDeviceData.validate()) {
validDataList.add(vehicleDeviceData);
} else {
invalidDataList.add(vehicleDeviceData);
logger.warn("车载设备数据验证失败,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());
}
}

// 批量处理有效数据
if (!validDataList.isEmpty()) {
EdgeComputingBatchResult processingResult = realTimeDataProcessingService.batchProcessData(validDataList);

result.setSuccessCount(processingResult.getSuccessCount());
result.setFailureCount(processingResult.getFailureCount() + invalidDataList.size());
} else {
result.setFailureCount(vehicleDeviceDataList.size());
}

result.setEndTime(System.currentTimeMillis());

// 记录批量处理指标
edgeComputingMonitorService.recordBatchDataProcessing(vehicleDeviceDataList.size(), result.getSuccessCount());

logger.info("批量车载设备数据处理完成,总数: {}, 成功: {}, 失败: {}, 耗时: {}ms",
result.getTotalCount(), result.getSuccessCount(), result.getFailureCount(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("批量车载设备数据处理异常", e);
result.setSuccess(false);
result.setError("批量车载设备数据处理异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 获取车载设备状态
* @param vehicleDeviceId 车载设备ID
* @return 设备状态
*/
public VehicleDeviceStatus getVehicleDeviceStatus(String vehicleDeviceId) {
logger.info("获取车载设备状态,设备ID: {}", vehicleDeviceId);

try {
VehicleDeviceStatus status = vehicleDeviceService.getDeviceStatus(vehicleDeviceId);

logger.info("获取车载设备状态成功,设备ID: {}, 状态: {}", vehicleDeviceId, status.getStatus());

return status;

} catch (Exception e) {
logger.error("获取车载设备状态异常,设备ID: {}", vehicleDeviceId, e);
return null;
}
}

/**
* 更新车载设备配置
* @param vehicleDeviceId 车载设备ID
* @param config 配置
* @return 更新结果
*/
public EdgeComputingConfigUpdateResult updateVehicleDeviceConfig(String vehicleDeviceId, Map<String, Object> config) {
logger.info("更新车载设备配置,设备ID: {}", vehicleDeviceId);

EdgeComputingConfigUpdateResult result = new EdgeComputingConfigUpdateResult();
result.setVehicleDeviceId(vehicleDeviceId);
result.setStartTime(System.currentTimeMillis());

try {
// 更新设备配置
boolean updated = vehicleDeviceService.updateDeviceConfig(vehicleDeviceId, config);

result.setSuccess(updated);
result.setEndTime(System.currentTimeMillis());

logger.info("车载设备配置更新完成,设备ID: {}, 成功: {}, 耗时: {}ms",
vehicleDeviceId, result.isSuccess(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("车载设备配置更新异常,设备ID: {}", vehicleDeviceId, e);
result.setSuccess(false);
result.setError("车载设备配置更新异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行边缘计算任务
* @param task 边缘计算任务
* @return 执行结果
*/
public EdgeComputingTaskResult executeEdgeComputingTask(EdgeComputingTask task) {
logger.info("执行边缘计算任务,任务ID: {}, 任务类型: {}", task.getTaskId(), task.getTaskType());

EdgeComputingTaskResult result = new EdgeComputingTaskResult();
result.setTaskId(task.getTaskId());
result.setTaskType(task.getTaskType());
result.setStartTime(System.currentTimeMillis());

try {
// 根据任务类型执行不同的处理
switch (task.getTaskType().toUpperCase()) {
case "DATA_PREPROCESSING":
result = executeDataPreprocessingTask(task);
break;
case "REAL_TIME_ANALYSIS":
result = executeRealTimeAnalysisTask(task);
break;
case "ANOMALY_DETECTION":
result = executeAnomalyDetectionTask(task);
break;
case "PREDICTIVE_MAINTENANCE":
result = executePredictiveMaintenanceTask(task);
break;
default:
result = executeDefaultTask(task);
break;
}

result.setEndTime(System.currentTimeMillis());

logger.info("边缘计算任务执行完成,任务ID: {}, 成功: {}, 耗时: {}ms",
task.getTaskId(), result.isSuccess(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("边缘计算任务执行异常,任务ID: {}", task.getTaskId(), e);
result.setSuccess(false);
result.setError("边缘计算任务执行异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行数据预处理任务
* @param task 任务
* @return 执行结果
*/
private EdgeComputingTaskResult executeDataPreprocessingTask(EdgeComputingTask task) {
logger.info("执行数据预处理任务,任务ID: {}", task.getTaskId());

EdgeComputingTaskResult result = new EdgeComputingTaskResult();
result.setTaskId(task.getTaskId());
result.setTaskType("DATA_PREPROCESSING");
result.setStartTime(System.currentTimeMillis());

try {
// 实现数据预处理逻辑
Map<String, Object> taskResult = new HashMap<>();
taskResult.put("task_id", task.getTaskId());
taskResult.put("task_type", "DATA_PREPROCESSING");
taskResult.put("processed_count", 100);
taskResult.put("timestamp", System.currentTimeMillis());

result.setSuccess(true);
result.setTaskResult(taskResult);
result.setEndTime(System.currentTimeMillis());

logger.info("数据预处理任务执行完成,任务ID: {}, 耗时: {}ms", task.getTaskId(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("数据预处理任务执行异常,任务ID: {}", task.getTaskId(), e);
result.setSuccess(false);
result.setError("数据预处理任务执行异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行实时分析任务
* @param task 任务
* @return 执行结果
*/
private EdgeComputingTaskResult executeRealTimeAnalysisTask(EdgeComputingTask task) {
logger.info("执行实时分析任务,任务ID: {}", task.getTaskId());

EdgeComputingTaskResult result = new EdgeComputingTaskResult();
result.setTaskId(task.getTaskId());
result.setTaskType("REAL_TIME_ANALYSIS");
result.setStartTime(System.currentTimeMillis());

try {
// 实现实时分析逻辑
Map<String, Object> taskResult = new HashMap<>();
taskResult.put("task_id", task.getTaskId());
taskResult.put("task_type", "REAL_TIME_ANALYSIS");
taskResult.put("analysis_result", "NORMAL");
taskResult.put("timestamp", System.currentTimeMillis());

result.setSuccess(true);
result.setTaskResult(taskResult);
result.setEndTime(System.currentTimeMillis());

logger.info("实时分析任务执行完成,任务ID: {}, 耗时: {}ms", task.getTaskId(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("实时分析任务执行异常,任务ID: {}", task.getTaskId(), e);
result.setSuccess(false);
result.setError("实时分析任务执行异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行异常检测任务
* @param task 任务
* @return 执行结果
*/
private EdgeComputingTaskResult executeAnomalyDetectionTask(EdgeComputingTask task) {
logger.info("执行异常检测任务,任务ID: {}", task.getTaskId());

EdgeComputingTaskResult result = new EdgeComputingTaskResult();
result.setTaskId(task.getTaskId());
result.setTaskType("ANOMALY_DETECTION");
result.setStartTime(System.currentTimeMillis());

try {
// 实现异常检测逻辑
Map<String, Object> taskResult = new HashMap<>();
taskResult.put("task_id", task.getTaskId());
taskResult.put("task_type", "ANOMALY_DETECTION");
taskResult.put("anomaly_count", 0);
taskResult.put("detection_result", "NORMAL");
taskResult.put("timestamp", System.currentTimeMillis());

result.setSuccess(true);
result.setTaskResult(taskResult);
result.setEndTime(System.currentTimeMillis());

logger.info("异常检测任务执行完成,任务ID: {}, 耗时: {}ms", task.getTaskId(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("异常检测任务执行异常,任务ID: {}", task.getTaskId(), e);
result.setSuccess(false);
result.setError("异常检测任务执行异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行预测性维护任务
* @param task 任务
* @return 执行结果
*/
private EdgeComputingTaskResult executePredictiveMaintenanceTask(EdgeComputingTask task) {
logger.info("执行预测性维护任务,任务ID: {}", task.getTaskId());

EdgeComputingTaskResult result = new EdgeComputingTaskResult();
result.setTaskId(task.getTaskId());
result.setTaskType("PREDICTIVE_MAINTENANCE");
result.setStartTime(System.currentTimeMillis());

try {
// 实现预测性维护逻辑
Map<String, Object> taskResult = new HashMap<>();
taskResult.put("task_id", task.getTaskId());
taskResult.put("task_type", "PREDICTIVE_MAINTENANCE");
taskResult.put("maintenance_score", 85.5);
taskResult.put("maintenance_recommendation", "NORMAL");
taskResult.put("timestamp", System.currentTimeMillis());

result.setSuccess(true);
result.setTaskResult(taskResult);
result.setEndTime(System.currentTimeMillis());

logger.info("预测性维护任务执行完成,任务ID: {}, 耗时: {}ms", task.getTaskId(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("预测性维护任务执行异常,任务ID: {}", task.getTaskId(), e);
result.setSuccess(false);
result.setError("预测性维护任务执行异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行默认任务
* @param task 任务
* @return 执行结果
*/
private EdgeComputingTaskResult executeDefaultTask(EdgeComputingTask task) {
logger.info("执行默认任务,任务ID: {}", task.getTaskId());

EdgeComputingTaskResult result = new EdgeComputingTaskResult();
result.setTaskId(task.getTaskId());
result.setTaskType("DEFAULT");
result.setStartTime(System.currentTimeMillis());

try {
// 实现默认任务逻辑
Map<String, Object> taskResult = new HashMap<>();
taskResult.put("task_id", task.getTaskId());
taskResult.put("task_type", "DEFAULT");
taskResult.put("status", "COMPLETED");
taskResult.put("timestamp", System.currentTimeMillis());

result.setSuccess(true);
result.setTaskResult(taskResult);
result.setEndTime(System.currentTimeMillis());

logger.info("默认任务执行完成,任务ID: {}, 耗时: {}ms", task.getTaskId(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("默认任务执行异常,任务ID: {}", task.getTaskId(), e);
result.setSuccess(false);
result.setError("默认任务执行异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}
}

2.5 边缘计算车载设备本地预处理结果类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/**
* 边缘计算结果类
* @author 运维实战
*/
@Data
public class EdgeComputingResult {

private boolean success;
private String vehicleDeviceId;
private String vehicleId;
private VehicleDeviceData processedData;
private VehicleDeviceStatus deviceStatus;
private String error;
private long startTime;
private long endTime;

public EdgeComputingResult() {
this.success = false;
}

/**
* 获取处理耗时
* @return 处理耗时(毫秒)
*/
public long getDuration() {
return endTime - startTime;
}

/**
* 是否成功
* @return 是否成功
*/
public boolean isSuccess() {
return success;
}
}

/**
* 边缘计算批量结果类
* @author 运维实战
*/
@Data
public class EdgeComputingBatchResult {

private boolean success;
private int totalCount;
private int successCount;
private int failureCount;
private String error;
private long startTime;
private long endTime;

public EdgeComputingBatchResult() {
this.success = false;
this.successCount = 0;
this.failureCount = 0;
}

/**
* 获取处理耗时
* @return 处理耗时(毫秒)
*/
public long getDuration() {
return endTime - startTime;
}

/**
* 是否成功
* @return 是否成功
*/
public boolean isSuccess() {
return success;
}
}

/**
* 边缘计算配置更新结果类
* @author 运维实战
*/
@Data
public class EdgeComputingConfigUpdateResult {

private boolean success;
private String vehicleDeviceId;
private String message;
private String error;
private long startTime;
private long endTime;

public EdgeComputingConfigUpdateResult() {
this.success = false;
}

/**
* 获取更新耗时
* @return 更新耗时(毫秒)
*/
public long getDuration() {
return endTime - startTime;
}

/**
* 是否成功
* @return 是否成功
*/
public boolean isSuccess() {
return success;
}
}

/**
* 边缘计算任务结果类
* @author 运维实战
*/
@Data
public class EdgeComputingTaskResult {

private boolean success;
private String taskId;
private String taskType;
private Map<String, Object> taskResult;
private String error;
private long startTime;
private long endTime;

public EdgeComputingTaskResult() {
this.success = false;
this.taskResult = new HashMap<>();
}

/**
* 获取执行耗时
* @return 执行耗时(毫秒)
*/
public long getDuration() {
return endTime - startTime;
}

/**
* 是否成功
* @return 是否成功
*/
public boolean isSuccess() {
return success;
}
}

/**
* 车载设备状态类
* @author 运维实战
*/
@Data
public class VehicleDeviceStatus {

private String vehicleDeviceId;
private String status;
private String healthStatus;
private String lastUpdateTime;
private Map<String, Object> statusDetails;
private List<String> alerts;
private Map<String, Object> performanceMetrics;

public VehicleDeviceStatus() {
this.status = "UNKNOWN";
this.healthStatus = "UNKNOWN";
this.statusDetails = new HashMap<>();
this.alerts = new ArrayList<>();
this.performanceMetrics = new HashMap<>();
}

public VehicleDeviceStatus(String vehicleDeviceId) {
this();
this.vehicleDeviceId = vehicleDeviceId;
}
}

/**
* 边缘计算任务类
* @author 运维实战
*/
@Data
public class EdgeComputingTask {

private String taskId;
private String taskType;
private String taskName;
private String description;
private Map<String, Object> parameters;
private String priority;
private String status;
private Long createTime;
private Long startTime;
private Long endTime;
private String result;

public EdgeComputingTask() {
this.taskId = UUID.randomUUID().toString();
this.priority = "NORMAL";
this.status = "PENDING";
this.createTime = System.currentTimeMillis();
this.parameters = new HashMap<>();
}

public EdgeComputingTask(String taskType, String taskName) {
this();
this.taskType = taskType;
this.taskName = taskName;
}
}

3. 高级功能实现

3.1 车载设备管理服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/**
* 车载设备管理服务
* @author 运维实战
*/
@Service
public class VehicleDeviceService {

@Autowired
private EdgeComputingProperties properties;

@Autowired
private EdgeComputingMonitorService edgeComputingMonitorService;

private final Map<String, VehicleDeviceStatus> deviceStatusMap = new ConcurrentHashMap<>();
private final Map<String, Map<String, Object>> deviceConfigMap = new ConcurrentHashMap<>();

private static final Logger logger = LoggerFactory.getLogger(VehicleDeviceService.class);

/**
* 注册车载设备
* @param vehicleDeviceId 车载设备ID
* @param vehicleId 车辆ID
* @param deviceType 设备类型
* @return 注册结果
*/
public VehicleDeviceRegistrationResult registerVehicleDevice(String vehicleDeviceId, String vehicleId, String deviceType) {
logger.info("注册车载设备,设备ID: {}, 车辆ID: {}, 设备类型: {}", vehicleDeviceId, vehicleId, deviceType);

VehicleDeviceRegistrationResult result = new VehicleDeviceRegistrationResult();
result.setVehicleDeviceId(vehicleDeviceId);
result.setVehicleId(vehicleId);
result.setDeviceType(deviceType);
result.setStartTime(System.currentTimeMillis());

try {
// 检查设备是否已注册
if (deviceStatusMap.containsKey(vehicleDeviceId)) {
result.setSuccess(false);
result.setError("设备已注册");
result.setEndTime(System.currentTimeMillis());
return result;
}

// 创建设备状态
VehicleDeviceStatus deviceStatus = new VehicleDeviceStatus(vehicleDeviceId);
deviceStatus.setStatus("ACTIVE");
deviceStatus.setHealthStatus("HEALTHY");
deviceStatus.setLastUpdateTime(String.valueOf(System.currentTimeMillis()));

// 创建设备配置
Map<String, Object> deviceConfig = new HashMap<>();
deviceConfig.put("device_type", deviceType);
deviceConfig.put("vehicle_id", vehicleId);
deviceConfig.put("registration_time", System.currentTimeMillis());
deviceConfig.put("status", "ACTIVE");

// 存储设备状态和配置
deviceStatusMap.put(vehicleDeviceId, deviceStatus);
deviceConfigMap.put(vehicleDeviceId, deviceConfig);

result.setSuccess(true);
result.setDeviceStatus(deviceStatus);
result.setEndTime(System.currentTimeMillis());

logger.info("车载设备注册成功,设备ID: {}, 耗时: {}ms", vehicleDeviceId, result.getDuration());

return result;

} catch (Exception e) {
logger.error("车载设备注册异常,设备ID: {}", vehicleDeviceId, e);
result.setSuccess(false);
result.setError("车载设备注册异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 更新设备状态
* @param vehicleDeviceId 车载设备ID
* @param deviceStatus 设备状态
*/
public void updateDeviceStatus(String vehicleDeviceId, VehicleDeviceStatus deviceStatus) {
try {
if (deviceStatusMap.containsKey(vehicleDeviceId)) {
deviceStatusMap.put(vehicleDeviceId, deviceStatus);
logger.debug("更新设备状态成功,设备ID: {}", vehicleDeviceId);
} else {
logger.warn("设备不存在,无法更新状态,设备ID: {}", vehicleDeviceId);
}
} catch (Exception e) {
logger.error("更新设备状态异常,设备ID: {}", vehicleDeviceId, e);
}
}

/**
* 获取设备状态
* @param vehicleDeviceId 车载设备ID
* @return 设备状态
*/
public VehicleDeviceStatus getDeviceStatus(String vehicleDeviceId) {
try {
return deviceStatusMap.get(vehicleDeviceId);
} catch (Exception e) {
logger.error("获取设备状态异常,设备ID: {}", vehicleDeviceId, e);
return null;
}
}

/**
* 更新设备配置
* @param vehicleDeviceId 车载设备ID
* @param config 配置
* @return 是否成功
*/
public boolean updateDeviceConfig(String vehicleDeviceId, Map<String, Object> config) {
try {
if (deviceConfigMap.containsKey(vehicleDeviceId)) {
Map<String, Object> existingConfig = deviceConfigMap.get(vehicleDeviceId);
existingConfig.putAll(config);
existingConfig.put("last_update_time", System.currentTimeMillis());

deviceConfigMap.put(vehicleDeviceId, existingConfig);

logger.info("更新设备配置成功,设备ID: {}", vehicleDeviceId);
return true;
} else {
logger.warn("设备不存在,无法更新配置,设备ID: {}", vehicleDeviceId);
return false;
}
} catch (Exception e) {
logger.error("更新设备配置异常,设备ID: {}", vehicleDeviceId, e);
return false;
}
}

/**
* 获取设备配置
* @param vehicleDeviceId 车载设备ID
* @return 设备配置
*/
public Map<String, Object> getDeviceConfig(String vehicleDeviceId) {
try {
return deviceConfigMap.get(vehicleDeviceId);
} catch (Exception e) {
logger.error("获取设备配置异常,设备ID: {}", vehicleDeviceId, e);
return null;
}
}

/**
* 注销车载设备
* @param vehicleDeviceId 车载设备ID
* @return 注销结果
*/
public VehicleDeviceUnregistrationResult unregisterVehicleDevice(String vehicleDeviceId) {
logger.info("注销车载设备,设备ID: {}", vehicleDeviceId);

VehicleDeviceUnregistrationResult result = new VehicleDeviceUnregistrationResult();
result.setVehicleDeviceId(vehicleDeviceId);
result.setStartTime(System.currentTimeMillis());

try {
// 检查设备是否存在
if (!deviceStatusMap.containsKey(vehicleDeviceId)) {
result.setSuccess(false);
result.setError("设备不存在");
result.setEndTime(System.currentTimeMillis());
return result;
}

// 移除设备状态和配置
deviceStatusMap.remove(vehicleDeviceId);
deviceConfigMap.remove(vehicleDeviceId);

result.setSuccess(true);
result.setEndTime(System.currentTimeMillis());

logger.info("车载设备注销成功,设备ID: {}, 耗时: {}ms", vehicleDeviceId, result.getDuration());

return result;

} catch (Exception e) {
logger.error("车载设备注销异常,设备ID: {}", vehicleDeviceId, e);
result.setSuccess(false);
result.setError("车载设备注销异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 获取所有设备状态
* @return 所有设备状态
*/
public Map<String, VehicleDeviceStatus> getAllDeviceStatus() {
try {
return new HashMap<>(deviceStatusMap);
} catch (Exception e) {
logger.error("获取所有设备状态异常", e);
return new HashMap<>();
}
}

/**
* 获取设备数量
* @return 设备数量
*/
public int getDeviceCount() {
try {
return deviceStatusMap.size();
} catch (Exception e) {
logger.error("获取设备数量异常", e);
return 0;
}
}

/**
* 检查设备是否存在
* @param vehicleDeviceId 车载设备ID
* @return 是否存在
*/
public boolean deviceExists(String vehicleDeviceId) {
try {
return deviceStatusMap.containsKey(vehicleDeviceId);
} catch (Exception e) {
logger.error("检查设备是否存在异常,设备ID: {}", vehicleDeviceId, e);
return false;
}
}
}

3.2 本地预处理服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/**
* 本地预处理服务
* @author 运维实战
*/
@Service
public class LocalPreprocessingService {

@Autowired
private EdgeComputingProperties properties;

@Autowired
private EdgeComputingMonitorService edgeComputingMonitorService;

private static final Logger logger = LoggerFactory.getLogger(LocalPreprocessingService.class);

/**
* 预处理数据
* @param vehicleDeviceData 车载设备数据
* @return 预处理结果
*/
public LocalPreprocessingResult preprocessData(VehicleDeviceData vehicleDeviceData) {
logger.info("预处理车载设备数据,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());

LocalPreprocessingResult result = new LocalPreprocessingResult();
result.setVehicleDeviceId(vehicleDeviceData.getVehicleDeviceId());
result.setStartTime(System.currentTimeMillis());

try {
// 数据验证
if (!vehicleDeviceData.validate()) {
result.setSuccess(false);
result.setError("数据验证失败");
result.setEndTime(System.currentTimeMillis());
return result;
}

// 数据清洗
VehicleDeviceData cleanedData = cleanData(vehicleDeviceData);

// 数据过滤
if (properties.isEnableDataFiltering()) {
if (!filterData(cleanedData)) {
result.setSuccess(false);
result.setError("数据过滤失败");
result.setEndTime(System.currentTimeMillis());
return result;
}
}

// 数据压缩
if (properties.isEnableDataCompression()) {
cleanedData = compressData(cleanedData);
}

// 异常检测
if (properties.isEnableAnomalyDetection()) {
boolean isAnomaly = detectAnomaly(cleanedData);
if (isAnomaly) {
logger.warn("检测到异常数据,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());
cleanedData.addExtendedProperty("is_anomaly", true);
} else {
cleanedData.addExtendedProperty("is_anomaly", false);
}
}

// 数据质量评估
int dataQuality = cleanedData.calculateDataQuality();
cleanedData.addExtendedProperty("data_quality", dataQuality);

result.setSuccess(true);
result.setProcessedData(cleanedData);
result.setEndTime(System.currentTimeMillis());

logger.info("车载设备数据预处理完成,设备ID: {}, 成功: {}, 耗时: {}ms",
vehicleDeviceData.getVehicleDeviceId(), result.isSuccess(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("车载设备数据预处理异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
result.setSuccess(false);
result.setError("车载设备数据预处理异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 数据清洗
* @param vehicleDeviceData 车载设备数据
* @return 清洗后的数据
*/
private VehicleDeviceData cleanData(VehicleDeviceData vehicleDeviceData) {
VehicleDeviceData cleanedData = new VehicleDeviceData();

// 复制基本字段
cleanedData.setVehicleDeviceId(vehicleDeviceData.getVehicleDeviceId());
cleanedData.setVehicleDeviceType(vehicleDeviceData.getVehicleDeviceType());
cleanedData.setVehicleId(vehicleDeviceData.getVehicleId());
cleanedData.setTimestamp(vehicleDeviceData.getTimestamp());

// 清洗数值字段
cleanedData.setSpeed(cleanNumericValue(vehicleDeviceData.getSpeed(), 0.0, 300.0));
cleanedData.setEngineRpm(cleanIntegerValue(vehicleDeviceData.getEngineRpm(), 0, 10000));
cleanedData.setEngineTemperature(cleanNumericValue(vehicleDeviceData.getEngineTemperature(), -40.0, 150.0));
cleanedData.setFuelConsumption(cleanNumericValue(vehicleDeviceData.getFuelConsumption(), 0.0, 50.0));
cleanedData.setBatteryVoltage(cleanNumericValue(vehicleDeviceData.getBatteryVoltage(), 0.0, 50.0));

// 清洗地理位置
if (vehicleDeviceData.getLocation() != null && vehicleDeviceData.getLocation().validate()) {
cleanedData.setLocation(vehicleDeviceData.getLocation());
}

// 清洗驾驶行为数据
if (vehicleDeviceData.getDrivingBehavior() != null) {
cleanedData.setDrivingBehavior(vehicleDeviceData.getDrivingBehavior());
}

// 清洗车辆状态
if (vehicleDeviceData.getVehicleStatus() != null) {
cleanedData.setVehicleStatus(vehicleDeviceData.getVehicleStatus());
}

// 清洗原始数据
if (vehicleDeviceData.getRawData() != null) {
cleanedData.setRawData(new HashMap<>(vehicleDeviceData.getRawData()));
}

// 清洗扩展属性
if (vehicleDeviceData.getExtendedProperties() != null) {
cleanedData.setExtendedProperties(new HashMap<>(vehicleDeviceData.getExtendedProperties()));
}

return cleanedData;
}

/**
* 清洗数值
* @param value 原值
* @param min 最小值
* @param max 最大值
* @return 清洗后的值
*/
private Double cleanNumericValue(Double value, double min, double max) {
if (value == null) {
return null;
}

if (value < min || value > max) {
return null;
}

return value;
}

/**
* 清洗整数
* @param value 原值
* @param min 最小值
* @param max 最大值
* @return 清洗后的值
*/
private Integer cleanIntegerValue(Integer value, int min, int max) {
if (value == null) {
return null;
}

if (value < min || value > max) {
return null;
}

return value;
}

/**
* 数据过滤
* @param vehicleDeviceData 车载设备数据
* @return 是否通过过滤
*/
private boolean filterData(VehicleDeviceData vehicleDeviceData) {
try {
for (String rule : properties.getDataFilteringRules()) {
if (!evaluateFilterRule(vehicleDeviceData, rule)) {
return false;
}
}
return true;
} catch (Exception e) {
logger.error("数据过滤异常", e);
return false;
}
}

/**
* 评估过滤规则
* @param vehicleDeviceData 车载设备数据
* @param rule 过滤规则
* @return 是否通过
*/
private boolean evaluateFilterRule(VehicleDeviceData vehicleDeviceData, String rule) {
try {
// 简单的规则评估逻辑
if (rule.contains("speed > 0")) {
return vehicleDeviceData.getSpeed() != null && vehicleDeviceData.getSpeed() > 0;
}

if (rule.contains("engine_rpm > 0")) {
return vehicleDeviceData.getEngineRpm() != null && vehicleDeviceData.getEngineRpm() > 0;
}

// 可以添加更多规则
return true;
} catch (Exception e) {
logger.error("评估过滤规则异常,规则: {}", rule, e);
return false;
}
}

/**
* 数据压缩
* @param vehicleDeviceData 车载设备数据
* @return 压缩后的数据
*/
private VehicleDeviceData compressData(VehicleDeviceData vehicleDeviceData) {
try {
// 实现数据压缩逻辑
// 这里可以添加具体的数据压缩算法
vehicleDeviceData.addExtendedProperty("compressed", true);
vehicleDeviceData.addExtendedProperty("compression_algorithm", properties.getDataCompressionAlgorithm());
vehicleDeviceData.addExtendedProperty("compression_level", properties.getCompressionLevel());

return vehicleDeviceData;
} catch (Exception e) {
logger.error("数据压缩异常", e);
return vehicleDeviceData;
}
}

/**
* 异常检测
* @param vehicleDeviceData 车载设备数据
* @return 是否异常
*/
private boolean detectAnomaly(VehicleDeviceData vehicleDeviceData) {
try {
// 实现异常检测逻辑
// 这里可以添加具体的异常检测算法

// 检查车速异常
if (vehicleDeviceData.getSpeed() != null && vehicleDeviceData.getSpeed() > 200) {
return true;
}

// 检查发动机转速异常
if (vehicleDeviceData.getEngineRpm() != null && vehicleDeviceData.getEngineRpm() > 8000) {
return true;
}

// 检查发动机温度异常
if (vehicleDeviceData.getEngineTemperature() != null && vehicleDeviceData.getEngineTemperature() > 120) {
return true;
}

return false;
} catch (Exception e) {
logger.error("异常检测异常", e);
return false;
}
}
}

3.3 实时数据处理服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/**
* 实时数据处理服务
* @author 运维实战
*/
@Service
public class RealTimeDataProcessingService {

@Autowired
private EdgeComputingProperties properties;

@Autowired
private EdgeComputingMonitorService edgeComputingMonitorService;

private static final Logger logger = LoggerFactory.getLogger(RealTimeDataProcessingService.class);

/**
* 处理数据
* @param vehicleDeviceData 车载设备数据
* @return 处理结果
*/
public RealTimeDataProcessingResult processData(VehicleDeviceData vehicleDeviceData) {
logger.info("实时处理车载设备数据,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());

RealTimeDataProcessingResult result = new RealTimeDataProcessingResult();
result.setVehicleDeviceId(vehicleDeviceData.getVehicleDeviceId());
result.setStartTime(System.currentTimeMillis());

try {
// 实时分析
RealTimeAnalysisResult analysisResult = performRealTimeAnalysis(vehicleDeviceData);

// 实时预警
if (properties.isEnableRealTimeAlert()) {
RealTimeAlertResult alertResult = performRealTimeAlert(vehicleDeviceData);
if (alertResult.hasAlerts()) {
result.setAlerts(alertResult.getAlerts());
}
}

// 更新设备状态
VehicleDeviceStatus deviceStatus = updateDeviceStatus(vehicleDeviceData, analysisResult);

result.setSuccess(true);
result.setProcessedData(vehicleDeviceData);
result.setDeviceStatus(deviceStatus);
result.setAnalysisResult(analysisResult);
result.setEndTime(System.currentTimeMillis());

logger.info("车载设备数据实时处理完成,设备ID: {}, 成功: {}, 耗时: {}ms",
vehicleDeviceData.getVehicleDeviceId(), result.isSuccess(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("车载设备数据实时处理异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
result.setSuccess(false);
result.setError("车载设备数据实时处理异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 批量处理数据
* @param vehicleDeviceDataList 车载设备数据列表
* @return 批量处理结果
*/
public EdgeComputingBatchResult batchProcessData(List<VehicleDeviceData> vehicleDeviceDataList) {
logger.info("批量实时处理车载设备数据,数量: {}", vehicleDeviceDataList.size());

EdgeComputingBatchResult result = new EdgeComputingBatchResult();
result.setTotalCount(vehicleDeviceDataList.size());
result.setStartTime(System.currentTimeMillis());

try {
int successCount = 0;
int failureCount = 0;

for (VehicleDeviceData vehicleDeviceData : vehicleDeviceDataList) {
try {
RealTimeDataProcessingResult processingResult = processData(vehicleDeviceData);
if (processingResult.isSuccess()) {
successCount++;
} else {
failureCount++;
}
} catch (Exception e) {
logger.error("批量处理单条数据异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
failureCount++;
}
}

result.setSuccessCount(successCount);
result.setFailureCount(failureCount);
result.setEndTime(System.currentTimeMillis());

logger.info("批量车载设备数据实时处理完成,总数: {}, 成功: {}, 失败: {}, 耗时: {}ms",
result.getTotalCount(), result.getSuccessCount(), result.getFailureCount(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("批量车载设备数据实时处理异常", e);
result.setSuccess(false);
result.setError("批量车载设备数据实时处理异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行实时分析
* @param vehicleDeviceData 车载设备数据
* @return 分析结果
*/
private RealTimeAnalysisResult performRealTimeAnalysis(VehicleDeviceData vehicleDeviceData) {
logger.info("执行实时分析,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());

RealTimeAnalysisResult result = new RealTimeAnalysisResult();
result.setVehicleDeviceId(vehicleDeviceData.getVehicleDeviceId());
result.setStartTime(System.currentTimeMillis());

try {
// 驾驶行为分析
DrivingBehaviorAnalysisResult behaviorAnalysis = analyzeDrivingBehavior(vehicleDeviceData);

// 车辆健康分析
VehicleHealthAnalysisResult healthAnalysis = analyzeVehicleHealth(vehicleDeviceData);

// 路况分析
RoadConditionAnalysisResult roadAnalysis = analyzeRoadCondition(vehicleDeviceData);

result.setSuccess(true);
result.setBehaviorAnalysis(behaviorAnalysis);
result.setHealthAnalysis(healthAnalysis);
result.setRoadAnalysis(roadAnalysis);
result.setEndTime(System.currentTimeMillis());

logger.info("实时分析完成,设备ID: {}, 耗时: {}ms",
vehicleDeviceData.getVehicleDeviceId(), result.getDuration());

return result;

} catch (Exception e) {
logger.error("实时分析异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
result.setSuccess(false);
result.setError("实时分析异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 执行实时预警
* @param vehicleDeviceData 车载设备数据
* @return 预警结果
*/
private RealTimeAlertResult performRealTimeAlert(VehicleDeviceData vehicleDeviceData) {
logger.info("执行实时预警,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());

RealTimeAlertResult result = new RealTimeAlertResult();
result.setVehicleDeviceId(vehicleDeviceData.getVehicleDeviceId());
result.setStartTime(System.currentTimeMillis());

try {
List<String> alerts = new ArrayList<>();

// 检查预警规则
for (String rule : properties.getAlertRules()) {
if (evaluateAlertRule(vehicleDeviceData, rule)) {
alerts.add(rule);
}
}

result.setSuccess(true);
result.setAlerts(alerts);
result.setEndTime(System.currentTimeMillis());

if (!alerts.isEmpty()) {
logger.warn("检测到预警,设备ID: {}, 预警数量: {}", vehicleDeviceData.getVehicleDeviceId(), alerts.size());
}

return result;

} catch (Exception e) {
logger.error("实时预警异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
result.setSuccess(false);
result.setError("实时预警异常: " + e.getMessage());
result.setEndTime(System.currentTimeMillis());
return result;
}
}

/**
* 更新设备状态
* @param vehicleDeviceData 车载设备数据
* @param analysisResult 分析结果
* @return 设备状态
*/
private VehicleDeviceStatus updateDeviceStatus(VehicleDeviceData vehicleDeviceData, RealTimeAnalysisResult analysisResult) {
VehicleDeviceStatus deviceStatus = new VehicleDeviceStatus(vehicleDeviceData.getVehicleDeviceId());

try {
// 更新基本状态
deviceStatus.setStatus("ACTIVE");
deviceStatus.setLastUpdateTime(String.valueOf(System.currentTimeMillis()));

// 更新健康状态
if (analysisResult.getHealthAnalysis() != null) {
deviceStatus.setHealthStatus(analysisResult.getHealthAnalysis().getOverallHealthStatus());
}

// 更新状态详情
Map<String, Object> statusDetails = new HashMap<>();
statusDetails.put("speed", vehicleDeviceData.getSpeed());
statusDetails.put("engine_rpm", vehicleDeviceData.getEngineRpm());
statusDetails.put("engine_temperature", vehicleDeviceData.getEngineTemperature());
statusDetails.put("fuel_consumption", vehicleDeviceData.getFuelConsumption());
statusDetails.put("battery_voltage", vehicleDeviceData.getBatteryVoltage());
deviceStatus.setStatusDetails(statusDetails);

// 更新性能指标
Map<String, Object> performanceMetrics = new HashMap<>();
performanceMetrics.put("data_quality", vehicleDeviceData.getExtendedProperty("data_quality"));
performanceMetrics.put("processing_time", System.currentTimeMillis());
deviceStatus.setPerformanceMetrics(performanceMetrics);

return deviceStatus;

} catch (Exception e) {
logger.error("更新设备状态异常,设备ID: {}", vehicleDeviceData.getVehicleDeviceId(), e);
return deviceStatus;
}
}

/**
* 分析驾驶行为
* @param vehicleDeviceData 车载设备数据
* @return 驾驶行为分析结果
*/
private DrivingBehaviorAnalysisResult analyzeDrivingBehavior(VehicleDeviceData vehicleDeviceData) {
DrivingBehaviorAnalysisResult result = new DrivingBehaviorAnalysisResult();

try {
// 实现驾驶行为分析逻辑
result.setSuccess(true);
result.setDrivingScore(85.5);
result.setRiskLevel("LOW");
result.setAnalysisResult("NORMAL");

return result;
} catch (Exception e) {
logger.error("驾驶行为分析异常", e);
result.setSuccess(false);
result.setError("驾驶行为分析异常: " + e.getMessage());
return result;
}
}

/**
* 分析车辆健康
* @param vehicleDeviceData 车载设备数据
* @return 车辆健康分析结果
*/
private VehicleHealthAnalysisResult analyzeVehicleHealth(VehicleDeviceData vehicleDeviceData) {
VehicleHealthAnalysisResult result = new VehicleHealthAnalysisResult();

try {
// 实现车辆健康分析逻辑
result.setSuccess(true);
result.setOverallHealthStatus("HEALTHY");
result.setHealthScore(90.0);
result.setMaintenanceRecommendation("NORMAL");

return result;
} catch (Exception e) {
logger.error("车辆健康分析异常", e);
result.setSuccess(false);
result.setError("车辆健康分析异常: " + e.getMessage());
return result;
}
}

/**
* 分析路况
* @param vehicleDeviceData 车载设备数据
* @return 路况分析结果
*/
private RoadConditionAnalysisResult analyzeRoadCondition(VehicleDeviceData vehicleDeviceData) {
RoadConditionAnalysisResult result = new RoadConditionAnalysisResult();

try {
// 实现路况分析逻辑
result.setSuccess(true);
result.setRoadCondition("NORMAL");
result.setTrafficLevel("MODERATE");
result.setWeatherCondition("CLEAR");

return result;
} catch (Exception e) {
logger.error("路况分析异常", e);
result.setSuccess(false);
result.setError("路况分析异常: " + e.getMessage());
return result;
}
}

/**
* 评估预警规则
* @param vehicleDeviceData 车载设备数据
* @param rule 预警规则
* @return 是否触发预警
*/
private boolean evaluateAlertRule(VehicleDeviceData vehicleDeviceData, String rule) {
try {
// 简单的规则评估逻辑
if (rule.contains("speed > 120")) {
return vehicleDeviceData.getSpeed() != null && vehicleDeviceData.getSpeed() > 120;
}

if (rule.contains("engine_temp > 100")) {
return vehicleDeviceData.getEngineTemperature() != null && vehicleDeviceData.getEngineTemperature() > 100;
}

// 可以添加更多规则
return false;
} catch (Exception e) {
logger.error("评估预警规则异常,规则: {}", rule, e);
return false;
}
}
}

3.4 边缘计算监控服务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/**
* 边缘计算监控服务
* @author 运维实战
*/
@Service
public class EdgeComputingMonitorService {

private final AtomicLong totalDataProcessed = new AtomicLong(0);
private final AtomicLong totalDataProcessedSuccessfully = new AtomicLong(0);
private final AtomicLong totalDataProcessedFailed = new AtomicLong(0);
private final AtomicLong totalTasksExecuted = new AtomicLong(0);
private final AtomicLong totalTasksExecutedSuccessfully = new AtomicLong(0);
private final AtomicLong totalTasksExecutedFailed = new AtomicLong(0);

private long lastResetTime = System.currentTimeMillis();
private final long resetInterval = 300000; // 5分钟重置一次

private static final Logger logger = LoggerFactory.getLogger(EdgeComputingMonitorService.class);

/**
* 记录数据处理
* @param vehicleDeviceId 车载设备ID
* @param success 是否成功
*/
public void recordDataProcessing(String vehicleDeviceId, boolean success) {
totalDataProcessed.incrementAndGet();

if (success) {
totalDataProcessedSuccessfully.incrementAndGet();
} else {
totalDataProcessedFailed.incrementAndGet();
}

logger.debug("记录数据处理: 设备ID={}, 成功={}", vehicleDeviceId, success);
}

/**
* 记录批量数据处理
* @param totalCount 总数量
* @param successCount 成功数量
*/
public void recordBatchDataProcessing(int totalCount, int successCount) {
totalDataProcessed.addAndGet(totalCount);
totalDataProcessedSuccessfully.addAndGet(successCount);
totalDataProcessedFailed.addAndGet(totalCount - successCount);

logger.debug("记录批量数据处理: 总数={}, 成功={}", totalCount, successCount);
}

/**
* 记录任务执行
* @param taskId 任务ID
* @param success 是否成功
*/
public void recordTaskExecution(String taskId, boolean success) {
totalTasksExecuted.incrementAndGet();

if (success) {
totalTasksExecutedSuccessfully.incrementAndGet();
} else {
totalTasksExecutedFailed.incrementAndGet();
}

logger.debug("记录任务执行: 任务ID={}, 成功={}", taskId, success);
}

/**
* 获取监控指标
* @return 监控指标
*/
public EdgeComputingMetrics getMetrics() {
// 检查是否需要重置
if (System.currentTimeMillis() - lastResetTime > resetInterval) {
resetMetrics();
}

EdgeComputingMetrics metrics = new EdgeComputingMetrics();
metrics.setTotalDataProcessed(totalDataProcessed.get());
metrics.setTotalDataProcessedSuccessfully(totalDataProcessedSuccessfully.get());
metrics.setTotalDataProcessedFailed(totalDataProcessedFailed.get());
metrics.setTotalTasksExecuted(totalTasksExecuted.get());
metrics.setTotalTasksExecutedSuccessfully(totalTasksExecutedSuccessfully.get());
metrics.setTotalTasksExecutedFailed(totalTasksExecutedFailed.get());
metrics.setTimestamp(System.currentTimeMillis());

return metrics;
}

/**
* 重置指标
*/
private void resetMetrics() {
totalDataProcessed.set(0);
totalDataProcessedSuccessfully.set(0);
totalDataProcessedFailed.set(0);
totalTasksExecuted.set(0);
totalTasksExecutedSuccessfully.set(0);
totalTasksExecutedFailed.set(0);
lastResetTime = System.currentTimeMillis();

logger.info("边缘计算监控指标重置");
}

/**
* 定期监控边缘计算状态
*/
@Scheduled(fixedRate = 30000) // 每30秒监控一次
public void monitorEdgeComputingStatus() {
try {
EdgeComputingMetrics metrics = getMetrics();

logger.info("边缘计算监控: 数据处理={}, 成功={}, 失败={}, 任务执行={}, 成功={}, 失败={}, 数据处理成功率={}%, 任务执行成功率={}%",
metrics.getTotalDataProcessed(), metrics.getTotalDataProcessedSuccessfully(), metrics.getTotalDataProcessedFailed(),
metrics.getTotalTasksExecuted(), metrics.getTotalTasksExecutedSuccessfully(), metrics.getTotalTasksExecutedFailed(),
String.format("%.2f", metrics.getDataProcessingSuccessRate()),
String.format("%.2f", metrics.getTaskExecutionSuccessRate()));

// 检查异常情况
if (metrics.getDataProcessingSuccessRate() < 95) {
logger.warn("边缘计算数据处理成功率过低: {}%", String.format("%.2f", metrics.getDataProcessingSuccessRate()));
}

if (metrics.getTaskExecutionSuccessRate() < 90) {
logger.warn("边缘计算任务执行成功率过低: {}%", String.format("%.2f", metrics.getTaskExecutionSuccessRate()));
}

} catch (Exception e) {
logger.error("边缘计算状态监控失败", e);
}
}
}

3.5 边缘计算指标类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/**
* 边缘计算指标类
* @author 运维实战
*/
@Data
public class EdgeComputingMetrics {

private long totalDataProcessed;
private long totalDataProcessedSuccessfully;
private long totalDataProcessedFailed;
private long totalTasksExecuted;
private long totalTasksExecutedSuccessfully;
private long totalTasksExecutedFailed;
private long timestamp;

public EdgeComputingMetrics() {
this.timestamp = System.currentTimeMillis();
}

/**
* 获取数据处理成功率
* @return 数据处理成功率
*/
public double getDataProcessingSuccessRate() {
long total = totalDataProcessedSuccessfully + totalDataProcessedFailed;
if (total == 0) return 0.0;
return (double) totalDataProcessedSuccessfully / total * 100;
}

/**
* 获取数据处理失败率
* @return 数据处理失败率
*/
public double getDataProcessingFailureRate() {
long total = totalDataProcessedSuccessfully + totalDataProcessedFailed;
if (total == 0) return 0.0;
return (double) totalDataProcessedFailed / total * 100;
}

/**
* 获取任务执行成功率
* @return 任务执行成功率
*/
public double getTaskExecutionSuccessRate() {
long total = totalTasksExecutedSuccessfully + totalTasksExecutedFailed;
if (total == 0) return 0.0;
return (double) totalTasksExecutedSuccessfully / total * 100;
}

/**
* 获取任务执行失败率
* @return 任务执行失败率
*/
public double getTaskExecutionFailureRate() {
long total = totalTasksExecutedSuccessfully + totalTasksExecutedFailed;
if (total == 0) return 0.0;
return (double) totalTasksExecutedFailed / total * 100;
}

/**
* 获取数据处理效率
* @return 数据处理效率
*/
public double getDataProcessingEfficiency() {
if (totalDataProcessed == 0) return 0.0;
return (double) totalDataProcessedSuccessfully / totalDataProcessed * 100;
}

/**
* 获取任务执行效率
* @return 任务执行效率
*/
public double getTaskExecutionEfficiency() {
if (totalTasksExecuted == 0) return 0.0;
return (double) totalTasksExecutedSuccessfully / totalTasksExecuted * 100;
}

/**
* 是否健康
* @return 是否健康
*/
public boolean isHealthy() {
return getDataProcessingSuccessRate() > 95 &&
getTaskExecutionSuccessRate() > 90;
}
}

4. 边缘计算车载设备本地预处理控制器

4.1 边缘计算车载设备本地预处理REST控制器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/**
* 边缘计算车载设备本地预处理REST控制器
* @author 运维实战
*/
@RestController
@RequestMapping("/api/edge-computing")
public class EdgeComputingController {

@Autowired
private EdgeComputingService edgeComputingService;

@Autowired
private EdgeComputingMonitorService edgeComputingMonitorService;

private static final Logger logger = LoggerFactory.getLogger(EdgeComputingController.class);

/**
* 处理车载设备数据
* @param vehicleDeviceData 车载设备数据
* @return 处理结果
*/
@PostMapping("/process-data")
public ResponseEntity<EdgeComputingResult> processVehicleDeviceData(@RequestBody VehicleDeviceData vehicleDeviceData) {
try {
logger.info("接收到车载设备数据处理请求,设备ID: {}", vehicleDeviceData.getVehicleDeviceId());

EdgeComputingResult result = edgeComputingService.processVehicleDeviceData(vehicleDeviceData);

return ResponseEntity.ok(result);

} catch (Exception e) {
logger.error("车载设备数据处理失败", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
}
}

/**
* 批量处理车载设备数据
* @param vehicleDeviceDataList 车载设备数据列表
* @return 批量处理结果
*/
@PostMapping("/batch-process-data")
public ResponseEntity<EdgeComputingBatchResult> batchProcessVehicleDeviceData(@RequestBody List<VehicleDeviceData> vehicleDeviceDataList) {
try {
logger.info("接收到车载设备数据批量处理请求,数量: {}", vehicleDeviceDataList.size());

EdgeComputingBatchResult result = edgeComputingService.batchProcessVehicleDeviceData(vehicleDeviceDataList);

return ResponseEntity.ok(result);

} catch (Exception e) {
logger.error("车载设备数据批量处理失败", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
}
}

/**
* 获取车载设备状态
* @param vehicleDeviceId 车载设备ID
* @return 设备状态
*/
@GetMapping("/device-status/{vehicleDeviceId}")
public ResponseEntity<VehicleDeviceStatus> getVehicleDeviceStatus(@PathVariable String vehicleDeviceId) {
try {
logger.info("接收到获取车载设备状态请求,设备ID: {}", vehicleDeviceId);

VehicleDeviceStatus status = edgeComputingService.getVehicleDeviceStatus(vehicleDeviceId);

return ResponseEntity.ok(status);

} catch (Exception e) {
logger.error("获取车载设备状态失败", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
}
}

/**
* 更新车载设备配置
* @param vehicleDeviceId 车载设备ID
* @param config 配置
* @return 更新结果
*/
@PutMapping("/device-config/{vehicleDeviceId}")
public ResponseEntity<EdgeComputingConfigUpdateResult> updateVehicleDeviceConfig(@PathVariable String vehicleDeviceId, @RequestBody Map<String, Object> config) {
try {
logger.info("接收到更新车载设备配置请求,设备ID: {}", vehicleDeviceId);

EdgeComputingConfigUpdateResult result = edgeComputingService.updateVehicleDeviceConfig(vehicleDeviceId, config);

return ResponseEntity.ok(result);

} catch (Exception e) {
logger.error("更新车载设备配置失败", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
}
}

/**
* 执行边缘计算任务
* @param task 边缘计算任务
* @return 执行结果
*/
@PostMapping("/execute-task")
public ResponseEntity<EdgeComputingTaskResult> executeEdgeComputingTask(@RequestBody EdgeComputingTask task) {
try {
logger.info("接收到执行边缘计算任务请求,任务ID: {}", task.getTaskId());

EdgeComputingTaskResult result = edgeComputingService.executeEdgeComputingTask(task);

return ResponseEntity.ok(result);

} catch (Exception e) {
logger.error("执行边缘计算任务失败", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
}
}

/**
* 获取边缘计算监控指标
* @return 监控指标
*/
@GetMapping("/metrics")
public ResponseEntity<EdgeComputingMetrics> getEdgeComputingMetrics() {
try {
EdgeComputingMetrics metrics = edgeComputingMonitorService.getMetrics();
return ResponseEntity.ok(metrics);
} catch (Exception e) {
logger.error("获取边缘计算监控指标失败", e);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
}
}
}

5. 总结

5.1 边缘计算车载设备本地预处理最佳实践

  1. 合理设计边缘计算架构: 利用边缘计算的优势设计高效的本地预处理架构
  2. 优化数据处理性能: 使用合适的数据处理方式和算法
  3. 实现实时监控: 实时监控边缘计算状态和性能
  4. 建立异常处理机制: 实现完善的异常处理和用户友好提示
  5. 资源优化管理: 优化计算和存储资源使用

5.2 性能优化建议

  • 数据处理优化: 优化数据处理算法和流程
  • 缓存策略: 实现合理的数据缓存策略
  • 压缩优化: 优化数据压缩算法和参数
  • 网络优化: 优化网络传输和通信
  • 资源管理: 优化计算和存储资源管理

5.3 运维管理要点

  • 实时监控: 监控边缘计算状态和性能
  • 动态调整: 根据负载情况动态调整边缘计算配置
  • 异常处理: 建立异常处理和告警机制
  • 日志管理: 完善日志记录和分析
  • 性能调优: 根据监控数据优化边缘计算性能

通过本文的边缘计算车载设备本地预处理运维实战指南,您可以掌握边缘计算车载设备本地预处理的原理、实现方法、性能优化技巧以及在企业级应用中的最佳实践,构建高效、可靠的边缘计算系统!